Web cookies (also called HTTP cookies, browser cookies, or simply cookies) are small pieces of data that websites store on your device (computer, phone, etc.) through your web browser. They are used to remember information about you and your interactions with the site.
Purpose of Cookies:
Session Management:
Keeping you logged in
Remembering items in a shopping cart
Saving language or theme preferences
Personalization:
Tailoring content or ads based on your previous activity
Tracking & Analytics:
Monitoring browsing behavior for analytics or marketing purposes
Types of Cookies:
Session Cookies:
Temporary; deleted when you close your browser
Used for things like keeping you logged in during a single session
Persistent Cookies:
Stored on your device until they expire or are manually deleted
Used for remembering login credentials, settings, etc.
First-Party Cookies:
Set by the website you're visiting directly
Third-Party Cookies:
Set by other domains (usually advertisers) embedded in the website
Commonly used for tracking across multiple sites
Authentication cookies are a special type of web cookie used to identify and verify a user after they log in to a website or web application.
What They Do:
Once you log in to a site, the server creates an authentication cookie and sends it to your browser. This cookie:
Proves to the website that you're logged in
Prevents you from having to log in again on every page you visit
Can persist across sessions if you select "Remember me"
What's Inside an Authentication Cookie?
Typically, it contains:
A unique session ID (not your actual password)
Optional metadata (e.g., expiration time, security flags)
Analytics cookies are cookies used to collect data about how visitors interact with a website. Their primary purpose is to help website owners understand and improve user experience by analyzing things like:
How users navigate the site
Which pages are most/least visited
How long users stay on each page
What device, browser, or location the user is from
What They Track:
Some examples of data analytics cookies may collect:
Page views and time spent on pages
Click paths (how users move from page to page)
Bounce rate (users who leave without interacting)
User demographics (location, language, device)
Referring websites (how users arrived at the site)
Here’s how you can disable cookies in common browsers:
1. Google Chrome
Open Chrome and click the three vertical dots in the top-right corner.
Go to Settings > Privacy and security > Cookies and other site data.
Choose your preferred option:
Block all cookies (not recommended, can break most websites).
Block third-party cookies (can block ads and tracking cookies).
2. Mozilla Firefox
Open Firefox and click the three horizontal lines in the top-right corner.
Go to Settings > Privacy & Security.
Under the Enhanced Tracking Protection section, choose Strict to block most cookies or Custom to manually choose which cookies to block.
3. Safari
Open Safari and click Safari in the top-left corner of the screen.
Go to Preferences > Privacy.
Check Block all cookies to stop all cookies, or select options to block third-party cookies.
4. Microsoft Edge
Open Edge and click the three horizontal dots in the top-right corner.
Go to Settings > Privacy, search, and services > Cookies and site permissions.
Select your cookie settings from there, including blocking all cookies or blocking third-party cookies.
5. On Mobile (iOS/Android)
For Safari on iOS: Go to Settings > Safari > Privacy & Security > Block All Cookies.
For Chrome on Android: Open the app, tap the three dots, go to Settings > Privacy and security > Cookies.
Be Aware:
Disabling cookies can make your online experience more difficult. Some websites may not load properly, or you may be logged out frequently. Also, certain features may not work as expected.
About one mile from the Gant plaza, Goodwin Elementary School teaches some really bright kids. On January 15, 2019, science teacher Nancy Titchen and Goodwin teachers brought the entire 3rd grade class on a field trip to the Physics Learning Labs mock-up studio for some science fun. Students enjoyed a liquid nitrogen show, witnessed quantum effects in superconducting magnetic levitation, experienced mechanics concepts such as angular momentum, and learned about vibrations and the phenomenon mechanical of resonance. The expert hands of a star team of PhD students (Erin Curry and Donal Sheets) and new laboratory technicians (James Jaconetta and Zac Transport) ensured students had a great time and learned some interesting science. Big thanks to the staff and the Goodwin School!
The Katzenstein Distinguished Lectures series continued in the 2018 academic year with its twenty second Nobel Laureate lecturer, with an October 26, 2018 lecture by Professor Rainer Weiss of the Massachusetts Institute of Technology.
The title of Professor Weiss’ talk was “Exploration of the Universe with Gravitational Waves”, with abstract:
The observations of gravitational waves from the merger of binary black holes and from a binary neutron star coalescence followed by a set of astronomical measurements is an example of investigating the universe by “multi-messenger” astronomy. Gravitational waves will allow us to observe phenomena we already know in new ways as well as to test General Relativity in the limit of strong gravitational interactions – the dynamics of massive bodies traveling at relativistic speeds in a highly curved space-time. Since the gravitational waves are due to accelerating masses while electromagnetic waves are caused by accelerating charges, it is reasonable to expect new classes of sources to be detected by gravitational waves as well. The lecture will start with some basic concepts of gravitational waves, briefly describe the instruments and the methods for data analysis that enable the measurement of gravitational wave strains of one part in 10 to the 21, and then present the results of recent runs. The lecture will end with a vision for the future of gravitational wave astrophysics and astronomy.
Students discuss gravitational waves with Prof. Weiss (MIT) following lecture
In 2017 Professor Weiss shared the Nobel Prize in Physics with Professor Kip Thorne and Professor Barry Barishfor their epochal discovery of gravitational waves, waves that had been predicted by Albert Einstein using his General Theory of Relativity no less than a hundred years before.
Professor Rainer Weiss received his BS degree from MIT in 1955 and his PhD from MIT in 1962. He was on the faculty of Tufts University from 1960 to 1962, and did post-doctoral research at Princeton from 1962 to 1964. He joined the MIT faculty in 1964 and remained a regular faculty member there until he became emeritus in 2001. Along with Kip Thorne, the late Ronald Drever and Barry Barish he spearheaded the development of LIGO, the Laser Interferometer Gravitational-Wave Observatory, a set of two interferometers, one located in Louisiana and the other in Washington State. The interferometers would jointly look for gravitational wave signals seen in coincidence, and in September 2015 made the very first detection of gravity waves. At Louisiana State University he has served as an Adjunct Professor of Physics since 2001. As well as research in gravity waves Professor Weiss’ other primary interests are in atomic clocks and cosmic microwave background measurements.
Dr. Weiss had previously visited the University of Connecticut in Fall 2015 as part of a lecture series that fall given at the University of Connecticut in commemoration of the hundredth year of Einstein’s development of his Theory of General Relativity. At that time Dr. Weiss described the ongoing search at LIGO for gravity waves produced by the merger of two black holes. And the initial announcement of a discovery was made in February 2016, shortly after Dr. Weiss’s visit to the University of Connecticut. It is also of interest to note that Dr. ShepDoeleman of Harvard University was another of the speakers at the Fall 2015 University of Connecticut Einstein commemoration. He talked about the ongoing effort to actually detect the event horizons associated with black holes using the Event Horizon Telescope, black holes being yet another prediction of Einstein’s Theory that was also one hundred years old. And in 2019 Dr. Doeleman announced the very the first direct detection of a black hole event horizon. Thus, with the first detection of gravity waves produced by black hole mergers and then the detection of an event horizon itself, the theory of black holes is put on a very secure observational foundation. This lecture can be viewed: https://www.uctv14.com/ucspanblog/2018/12/10/katzenstein-distinguished-lecture-october-26th-2018?rq=Katzenstein
Dynamic Quantum Matter, Entangled orders and Quantum Criticality Workshop Dates: June 18- June 19, 2018
Sponsors
UConn, NSF, Nordita, Villum Center for Dirac Materials, Institute for Materials Science – Los Alamos, Wiley Publishers
Scope
The conference will focus on entangled and non-equilibrium orders in quantum materials. The 21st century marked the revolution of probing matter at the nano- to mesoscale and these developments continue to be the focus of active research. We now witness equally powerful developments occurring in our understanding, ability to probe, and manipulate quantum matter, in entangled orders and novel states, in the time domain. Recent progress in experimental techniques including x-ray optics, optical pumping, time resolved spectroscopies (ARPES optics), and in cold-atom systems has led to a resurgence of interest in the non-equilibrium aspect of quantum dynamics. The novel entangled orders that have nonzero “overlap” with more than one order parameter also have emerged as an exciting new direction for research in quantum matter. Entangled orders go beyond the conventional orders such as density and spin, and significantly expand the possible condensates we can observe. It is only because of the lack of experimental control, resolution, theoretical framework, and computational power, that the realm of entangled and quantum non-equilibrium remained largely unexplored until now. The time has come for us to turn full attention to these phenomena. Specific topics include: superconductivity and dynamics near quantum criticality, composite orders in correlated materials, effects of strain on quantum critical points, and superconductivity in STO. This conference will have a format of topical lectures, while leaving ample time for discussions.
The Physics Department Graduate Student Association, in collaboration with the faculty, organized the Annual Research Poster Day which was held this year on March 23, 2018.
Erin Curry presenting her poster “Intermetallic-Superalloy Radiative Heat Transfer in Additive Manufacturing”
About 15 students presented their research in a poster presentation. Awards were presented to graduate students Erin Curry and Martin Disla, and an undergraduate student Sadhana Suresh.
Martin Disla and Prof. WhitakerSadhana Suresh and Prof. Niloy Dutta
Friday afternoon on April 20, 2018 the UConn Physics Department held a colloquium in honor of Professor Douglas Hamilton on the occasion of his retirement from active service on the faculty. The colloquium was MC’ed by Prof. Jason Hancock, who surveyed the highlights of a career spanning four decades marked by notable accomplishments in research, teaching, and service. Several of Doug’s former students also presented tributes to their mentor, some in person, and some by video or written message, expressing their gratitude for what they learned from him, both by instruction and example. At the end of the hour, Doug presented some final comments, which were followed by a standing ovation in recognition of Doug’s many contributions to our field, our department, and the University. Doug, you will be missed!
The 21st Annual Katzenstein Distinguished Lecture was hosted by the UConn Physics Department, featuring Dr. Takaaki Kajita, 2015 Nobel Prize Winner from the University of Tokyo, speaking on “Oscillating Neutrinos.” After the lecture, a banquet with the speaker was held for members and guests of the department. We enjoyed welcoming alumni and visitors to the department for this special occasion, made possible by a generous gift from UConn Physics alumnus Henry Katzenstein and his family.
Muon g-2 Theory Initiative Hadronic Light-by-Light working group workshop
Workshop participants will discuss recent progress and plans to determine the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, which is expected to contribute the largest uncertainty in the Standard Model prediction. The goal of the workshop is to estimate current and expected systematic errors from lattice QCD, dispersive methods, and models and create a plan to address them in time for new experiments at Fermilab and J-PARC. For more information, please visit the workshop web site.
The physics department will be hosting Prof. Geri Richmond from the University of Oregon to give a Special Lecture on Diversity and Inclusion. The talk is Tuesday, November 28, 3:30pm, Physics/Biology Building, Room 131
The UConn Physics Graduate Student Association sponsored a social event featuring UConn dairy bar ice cream to welcome back students after the summer break. Other regular events throughout the year sponsored by the PGSA include the Holiday Party in December, the Poster Exhibition Competition in April, and the Department Picnic in May.
Leon Cooper, 1972 Nobel Laureat delivered the Distinguished Katzenstein lecture at UConn in October, 2016
The Katzenstein Distinguished Lectures series continued in Fall 2016 for its 19th year, with an October 28, 2016 lecture by Professor Leon N. Cooper of Brown University, entitled “On the Interpretation of the Quantum Theory: Can Free Will And Locality Exist Together In The Quantum Theory?” Professor Cooper shared the 1972 Nobel Prize in Physics with Professors J. Bardeen and J. R. Schrieffer. The Nobel Prize was awarded for the first microscopic theory of superconductivity, now known as the BCS Theory. Superconductivity as evidenced by the disappearance of electrical resistivity was first observed in Mercury by Kamerlingh Onnes in 1911. Immediately, many theorists including Albert Einstein, set out to explain this newly observed phenomena. However it was not until 1933 that the essential property of magnetic flux exclusion was observed by Meissner and Ochsenfeld. No successful microscopic theory was developed until the 1957 Physical Review Paper that developed the BCS theory. A crucial element for the theory was published in a short letter to the Physical Review in 1956 by Leon Cooper, entitled ‘Bound Electron Pairs, in a degenerate Fermi Gas’. These pairs are now commonly referred to as ‘Cooper Pairs’.
The 2016 lecture took place in Physics Building Lecture Room P-36, and an excellent attendance included physics undergraduates, graduate students, faculty from Physics and other departments, and a number of UConn Physics alumni. Prior to the lecture, Professor Cooper met informally with Physics students in the Physics Library, and then met people at a reception that preceded the lecture. Following the lecture, Professor Cooper joined with Henry Katzenstein’s son David, a Professor at Stanford Medical School, along with faculty, staff, alumni and guests for a gala dinner at the University of Connecticut’s Foundation Building. The Katzenstein Lectures are made possible by an endowment established by the late Dr. Henry S. Katzenstein and his wife Dr. Constance A. Katzenstein. Cornell Professor David Lee (1996 Nobel Laureate in Physics and 1956 M. S. alumnus of UConn) gave the first lecture of the current series of annual lectures by Nobel Laureates, in 1997. Henry Katzenstein received the very first Ph.D. in physics from our Department in 1954 after only three years as a graduate student here.
UConn Physics lecture hall PB-36 filled for 2016 Katzenstein Distinguished Lecture
This story was published in the University of Connecticut 2017 Annual Newsletter.