Author: Richard Jones

Radiation Damage Spreads

Radiation Damage Spreads Among Close Neighbors

X-ray absorption cascade
Direct hit. A soft x-ray (white) hits a holmium atom (green). A photo-electron zooms off the holmium atom, which releases energy (purple) that jumps to the 80-carbon fullerene cage surrounding the holmium. The cage then also loses an electron. (Courtesy of Razib Obaid)

 – Kim Krieger – UConn Communications

A single x-ray can unravel an enormous molecule, physicists report in the March 17 issue of Physical Review Letters. Their findings could lead to safer medical imaging and a more nuanced understanding of the electronics of heavy metals.

Medical imaging techniques such as MRIs use heavy metals from the bottom of the periodic table as “dyes” to make certain tissues easier to see. But these metals, called lanthanides, are toxic. To protect the person getting the MRI, some chemists wrap the lanthanide inside a cage of carbon atoms.

Molecular physicist Razib Obaid and his mentor, Prof. Nora Berrah in the physics department, wanted to know more about how the lanthanides interact with the carbon cages they’re wrapped in. The cages, 80 carbon atoms strong, are called fullerenes and are shaped like soccer balls. They don’t actually bond to the lanthanide; the metal floats inside the cage. There are many similar situations in nature. Proteins, for example, often have a metal hanging out close to a giant organic (that is, mostly made of carbon) molecule.

So Obaid and his team of collaborators from Kansas State University, Pulse Institute at Stanford, Max Planck Institute at Heidelberg, and the University of Heidelberg studied how three atoms of the lanthanide element holmium inside of an 80-carbon fullerene reacted to x-rays. Their initial guess was that when an x-ray first hit one of the holmium atoms, it would get absorbed by an electron. But that electron would be so energized by the absorbed x-ray that  it would fly right out of the atom, leaving a vacant spot. That spot would than get taken by another of the holmium’s electrons, which would have to jump down from the outer edge of the atom to fill it. That electron had formerly been partnered with another electron on the outskirts of the atom. When it jumped down, its lonely ex, called an Auger electron, would zoom away from the whole molecule and get detected by the scientists.  Its distinctive energy would give it away. 

It sounds complicated, but that would have been the simplest (and thus most likely) scenario, the physicists thought. But it’s not what they saw.

When Obaid and his colleagues zapped the holmium-fullerene molecule with a soft x-ray (about 160 electron-volts), the number of the Auger electrons detected was too low. And too many of the electrons had energies much less than the Auger electrons should have. 

After some calculating, the team figured out there was more going on than they’d guessed.

First, the x-ray would hit the holmium, which would lose an electron. The vacant spot would then be filled by the outer edge electron from the holmium atom. That much was correct. But the energy released by the jumping electron (when it jumps ‘down’ from the outskirts of the atom to the interior, it also jumps ‘down’ in energy) would then be absorbed by the carbon fullerene cage or another of the neighboring holmium atoms. In either case, the energy would cause an additional electron to zoom away from whatever absorbed it, the fullerene cage or the holmium atom.

Losing these multiple electrons destabilized the whole molecule, which would then fall apart entirely.

The end result?

“You can induce radiation damage just by striking one atom out of 84,” says Obaid. That is, a single x-ray strike is  enough to destroy the entire molecule complex through this energy transfer process involving neighboring atoms. It gives some insight into how radiation damage occurs in living systems, Obaid says. It was always thought that radiation damaged tissue by stripping away electrons directly. This experiment shows that interactions between an ionized atom or molecule and its neighbors can cause even more damage and decay than the original irradiation.

The work also gives medical physicists an idea of how to limit patient’s exposure to heavy metals used as dyes in medical imaging. Shielding all parts of the body from the radiation except for those to be imaged with heavy metal dyes can potentially restrict the heavy metal exposure as well as the radiation damage, the researchers say. The next step of this work would be to understand exactly how fast this interaction with the neighbors occurs. The researchers expect it to take place in just a few femtoseconds (10-15 s). 

The work was funded by Department of Energy, Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences, under Grant No. DE-SC0012376.

UConn seismometer detects Puerto Rico event

 

The Geophysics research group (Prof. Vernon Cormier and students) operate a seismic wave station that continuously monitors vibrations in the earth’s crust, many of which arise from seismic events that happen far away. These waves travel through the deep earth, and eventually make their way to the surface where they are detected. The above figures show high frequency and low frequency filtered seismograms recorded at UConn’s seismic station for the vertical component of ground motion from the earthquakes in Puerto Rico on January 7, 2020.  The 3 bursts of energy are P and S elastic waves, followed by a T wave, which propagates as an acoustic wave in the ocean.  In the high frequency seismogram (first figure), the large red trace is the main shock and the black trace below it is an aftershock. In the low frequency filtered seismogram (second figure), the largest energy propagates as a surface wave trapped in Earth’s crust and upper most mantle, with energy exponentially decaying into the mantle. Amplitude scale for ground particle velocity is shown by a bar in the upper left corner.

Insight from APS: Careers in Physics

What is a Bachelors of Science degree in Physics good for? What kinds of jobs are available to graduates who complete a 4-year degree in physics, but decide not to pursue an advanced degree? How does a physics degree stack up against other STEM fields in terms of employment options in today's highly competitive job market? Each year the American Physical Society gathers data to help answer questions like these, which they post on their physics careers web site and summarize in their Insight Slideshow. Scroll inside the window below to browse the latest edition of Insight.

Ron Mallett Featured on NBC Connecticut

Could traveling into the past be part of our future? Quite possibly, says Ron Mallett, a UConn emeritus professor of physics who has studied the concept of time travel for decades. Earlier this month, he spoke with NBC Connecticut reporter Kevin Nathan about his life and work as a theoretical physicist, and discussed how time travel may be possible someday.

View the video on nbc.com

Astronomer Jonathan Trump interviewed on UConn 360

UConn Astrophysicist and observational astronomer Jonathan Trump was a recent guest on UConn 360, a podcast from the Storrs campus of the University of Connecticut. In this conversation, Jonathan tells about how attending a lecture as an undergraduate at Penn State captured his interest and changed the course of his professional career. Now Jonathan offers similar career-changing opportunities to UConn students, who just this year have applied for and obtained dedicated time for observations by the Hubble space telescope.

Breaking Up is Hard To Do (for Electrons in High Temperature Superconductors)

Physics researcher Ilya Sochnikov next to a dilution refrigerator in the Gant Complex on July 16, 2019. (Sean Flynn/UConn Photo)

Physicists used to think that superconductivity – electricity flowing without resistance or loss – was an all or nothing phenomenon. But new evidence suggests that, at least in copper oxide superconductors, it’s not so clear cut.

Superconductors have amazing properties, and in principle could be used to build loss-free transmission lines and magnetic trains that levitate above superconducting tracks. But most superconductors only work at temperatures close to absolute zero. This temperature, called the critical temperature, is often only a few degrees Kelvin and requires liquid helium to stay that cold, making such superconductors too expensive for most commercial uses. A few superconductors, however, have a much warmer critical temperature, closer to the temperature of liquid nitrogen (77K), which is much more affordable. 

Many of these higher-temperature superconductors are based on a two-dimensional form of copper oxide. 

“If we understood why copper oxide is a superconductor at such high temperatures, we might be able to synthesize a better one” that works closer to room temperature (293K), says UConn physicist Ilya Sochnikov.

Sochnikov and his colleagues at Rice University, Brookhaven National Lab and Yale recently figured out part of that puzzle, and they report their results in the latest issue of Nature.

Their discovery was about how electrons behave in copper oxide superconductors. Electrons are the particles that carry electric charge through our everyday electronics. When a bunch of electrons flow in the same direction, we call that an electric current. In a normal electric circuit, say the wiring in your house, electrons bump and jostle each other and the surrounding atoms as they flow. That wastes some energy, which leaves the circuit as heat. Over long distances, that wasted energy can really add up: long-distance transmission lines in the U.S. lose on average 5% of their electricity before reaching a consumer, according to the Energy Information Administration. 

But in a superconductor below its critical temperature, electrons behave totally differently. Instead of bumping and jostling, they pair up and move in sync with the other electrons in a kind of wave. If electrons in a normal current are a rushing, uncoordinated mob, electrons in a superconductor are like dancing couples, gliding across the floor like people in a ballroom. It’s this friction-free dance – coherent motion – of paired electrons that makes a superconductor what it is.

The electrons are so happy in pairs in a superconductor that it takes a certain amount of energy to pull them apart. Physicists can measure this energy with an experiment that measures how big a voltage is needed to tear an electron away from its partner. They call it the ‘gap energy’. The gap energy disappears when the temperature rises above the critical temperature and the superconductor changes into an ordinary material. Physicists assumed this is because the electron pairs have broken up. And in classic, low-temperature superconductors, it’s pretty clear that that’s what’s happening.

But Sochnikov and his colleagues wanted to know whether this was really true for copper oxides. Copper oxides behave a little differently than classic superconductors. Even when the temperature rises well above the critical level, the energy gap persists for a while, diminishing gradually. It could be a clue as to what makes them different.

The researchers set up a version of the gap energy experiment to test this. They made a precise sandwich of two slices of copper oxide superconductor separated by a thin filling of electrical insulator. Each slice was just a few nanometers thick. The researchers then applied a voltage between them. Electrons began to tunnel from one slice of copper oxide to the other, creating a current.

By measuring the noise in that current, the researchers found that a significant number of the electrons seemed to be tunneling in pairs instead of singly, even above the critical temperature. Only about half the electrons tunneled in pairs, and this number dropped as the temperature rose, but it tapered off only gradually.

“Somehow they survive,” Sochnikov says, “they don’t break fully.” He and his colleagues are still not sure whether the paired states are the origin of the high-temperature superconductivity, or whether it’s a competing state that the superconductor has to win out over as the temperature falls. But either way, their discovery puts a constraint on how high temperature superconductors happen.

“Our results have profound implications for basic condensed matter physics theory,” says co-author Ivan Bozovic, group leader of the Oxide Molecular Beam Epitaxy Group in the Condensed Matter Physics and Materials Science Division at the U.S. Department of Energy’s Brookhaven National Laboratory and professor of applied physics at Yale University. Sochnikov agrees.

“There’s a thousand theories about copper oxide superconductors. This work allows us to narrow it down to a much smaller pool. Essentially, our results say that any theory has to pass a qualifying exam of explaining the existence of the observed electron pairs,” Sochnikov says. He and his collaborators at UConn, Rice University, and Brookhaven National Laboratory plan to tackle the remaining open questions by designing even more precise materials and experiments. 

The research work at UConn was funded by the State of Connecticut through laboratory startup funds.

This article first appeared on UConn Today, August 21, 2019.

Daniel McCarron wins NSF Early Career Award

Daniel McCarron, assistant professor of physics, the College of Liberal Arts and Sciences, will receive $645,000 over five years for his work on the development of techniques to trap large groups of molecules and cool them to temperatures near absolute zero. The possible control of molecules at this low temperature provides access to new research applications, such as quantum computers that can leverage the laws of quantum mechanics to outperform classical computers.

The NSF Faculty Early Career Development (CAREER) Program supports early-career faculty who have the potential to serve as academic role models in research and education, and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty build a firm foundation for a lifetime of leadership in integrating education and research.

McCarron was one of 8 junior faculty at the University of Connecticut to receive the prestigious Early Career awards from NSF in 2019. For a description of all 8 awards, see this recent article published in UConn Today.

Meet the Researcher: Carlos Trallero

 – Anna Zarra Aldrich ’20 (CLAS), Office of the Vice President for Research

When Carlos Trallero started his academic career in physics, he had no idea he would become a pioneer in a field of research that uses high-power lasers to investigate atomic and molecular physical phenomena.

Originally from Cuba, where there isn’t much funding for experimental research, Trallero began his academic career by studying theoretical physics. But as a senior graduate student at Stony Brook University, he got the chance to work in a lab doing experimental work and quickly recognized it was his true passion.

“I talked to a professor doing experimentation with ultra-fast lasers and I fell in love with it. And at first, I sucked at it — I was horrible,” says the professor of physics who is now working with four research grants funding separate investigations.

Trallero works with very short laser beams, with an emphasis on very short. The lasers he uses can pulse with attosecond precision. As a comparison, there are as many attoseconds in one second as there have been seconds in the entire history of the universe since the Big Bang.

It takes light half an attosecond to cross the orbit of hydrogen, the smallest atom. When trying to study something that fast, scientists need the kind of precision the lasers Trallero can offer. The goal of this research is to gain a better understanding of how electrons, one of the fundamental atomic building blocks in the universe, move and react to light. By understanding the physics of electron movement, scientists could improve the design of technologies like superconductors.

“The dream is to be able to perform logistical operations like a computer at the attosecond level,” Trallero says. “It would really advance computational speeds. If you could make as many calculations in a second as there have been seconds in the history of the universe – that’s an astounding number.”

His lab is now working to break the attosecond barrier into the zeptosecond barrier which is 1,000 times faster than the attosecond.

While some of the potential applications of this research remain unknown since the field is still in its infancy, Trallero views the premise of his research as creating basic knowledge. He is investigating the atomic and molecular phenomena which determine so many things in our universe but about which we still know relatively little.

From left to right, Edward McManus Michael Davino Carlos Trallero Brandin Davis Zhanna Rodnova Tobias Saule Rich Sadlon (Submitted Photo)
Members of Trallero’s lab from left to right, Edward McManus, Michael Davino, Carlos Trallero, Brandin Davis, Zhanna Rodnova, Tobias Saule, Rich Sadlon. (Carson Stifel (’21 CLAS)/UConn Photo)

One project funded by the Department of Energy has Trallero looking at the properties of atoms and molecules in the quantum world by harnessing light waveforms at the attosecond time scale through interferometry. Interferometers provide precise measurements of molecules using two beams of light which interfere with each other. The images produced by this technology will allow Trallero to find out information about the rotational dynamics of molecules.

“In the quantum world, properties of atoms and molecules are not as simple as in the real world,” says Trallero.

Another of Trallero’s grants, from the U.S. Air Force Office of Scientific Research, involves creating an incredibly bright beam. Trallero’s lab is working on taking electrons out of nanoparticles and then sending them back in, which will produce a bright, energetic light. “The process to study these dynamics has never been executed in this manner,” Trallero says.

Trallero is also working on two grants from the U.S. Navy,  including one that aims to develop infrared “body heat lasers.”

Through these grants, Trallero is developing a new class of laser which is only comparable to those found at large, multinational laser facilities like the European Light Infrastructure. Compared to the technology currently available to Trallero at UConn, this new class of laser will have almost 20 times more average power than the current laser.

Developing a laser of this caliber will be incredibly useful for studying phenomena that only occur a few times per shot of the laser in real time. The laser will enable researchers to probe the molecules with X-rays and ultraviolet rays to look at their structure and is being developed through a partnership with a Canadian company, Few-cycle, and a German company, Amphos. Researchers like Trallero are able to get advanced technology for a fraction of their retail value by doing research of interest for these companies, which are constantly trying to innovate in step with the science.

“We’re only paying a fraction of the price because the company is interested in showing they can develop this kind of technology,” Trallero says. “Showing they have the capacity and showcasing what we do with, and for, them helps them gain a customer base and it helps us make major advances in basic science at the same time.”

Trallero is also considering creating spin-off tech companies based on his university inventions with graduate students and postdocs. He has developed nanoparticle technology which can help transform molecules from a liquid to a gaseous state which could be beneficial for producing aerosols.

Trallero views physics as “the broadest science” since it has unique applications to math, engineering, chemistry and, even, biology. “I try to think about particular scientific questions in a different way than perhaps other people who have been working in this field for a long time do,” Trallero says. “Often we suffer from too much in-depth specialization.”

He wants to make use of the tools from every specialty he can, and he instills this same inclination in the students working in his lab.

“They don’t know what they’re going to face in the future and by having a broad skill set and a broad mindset they’ll be prepared for anything,” Trallero says. “You’re opening your mind to more possibilities.”

This article first appeared on UConn Today, August 19, 2019

Astronomers Assemble View of Evolving Universe

 – Donna Weaver & Ray Villard, Space Telescope Science Institute

The University of Connecticut’s Katherine Whitaker is part of a team of astronomers who have put together the largest and most comprehensive “history book” of the universe from 16 years’ worth of observations from NASA’s Hubble Space Telescope.

This image, a mosaic of nearly 7,500 separate Hubble exposures, presents a wide portrait of the distant universe and contains roughly 265,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the universe’s birth in the Big Bang. (Space Telescope Science Institute Image)

The deep-sky mosaic provides a wide portrait of the distant universe, containing 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. The tiny, faint, most distant galaxies in the image are similar to the seedling villages from which today’s great galaxy star-cities grew. The faintest and farthest galaxies are just one ten billionth the brightness of what the human eye can see.

The image yields a huge catalog of distant galaxies. “Such exquisite high-resolution measurements of the legacy field catalog of galaxies enable a wide swath of extragalactic study,” says Whitaker, the catalog lead researcher. “Often, these kinds of surveys have yielded unanticipated discoveries that have had the greatest impact on our understanding of galaxy evolution.”

The ambitious endeavor, called the Hubble Legacy Field, also combines observations taken by several Hubble deep-field surveys, including the eXtreme Deep Field (XDF), the deepest view of the universe. The wavelength range stretches from ultraviolet to near-infrared light, capturing all the features of galaxy ‘assembly over time.

“Now that we have gone wider than in previous surveys, we are harvesting many more distant galaxies in the largest such dataset ever produced,” says Garth Illingworth of the University of California, Santa Cruz, and leader of the team. “This one image contains the full history of the growth of galaxies in the universe, from their times as infants to when they grew into fully-fledged ‘adults.’”

Illingworth says he anticipates that the survey will lead to an even more coherent and in-depth understanding of the universe’s evolution in the coming years.

The deep-sky mosaic provides a wide portrait of the distant universe, containing 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang.

Galaxies trace the expansion of the universe, offering clues to the underlying physics of the cosmos, showing when the chemical elements originated and enabled the conditions that eventually led to the appearance of our solar system and life.

This new wider view contains 100 times as many galaxies as in the previous deep fields. The new portrait, a mosaic of multiple snapshots, covers almost the width of the full Moon, and chronicles the universe’s evolutionary history in one sweeping view. The portrait shows how galaxies change over time, building themselves up to become the giant galaxies seen in the nearby universe. The broad wavelength range covered in the legacy image also shows how galaxy stellar populations look different depending on the color of light.

The legacy field also uncovers a zoo of unusual objects. Many of them are the remnants of galactic “train wrecks,” a time in the early universe when small, young galaxies collided and merged with other galaxies.

Assembling all of the observations was an immense task. The image comprises the collective work of 31 Hubble programs by different teams of astronomers. Hubble has spent more time on this tiny area than on any other region of the sky, totaling more than 250 days.

The image, along with the individual exposures that make up the new view, is available to the worldwide astronomical community through the Mikulski Archive for Space Telescopes (MAST), an online database of astronomical data from Hubble and other NASA missions.

The new set of Hubble images, created from nearly 7,500 individual exposures, is the first in a series of Hubble Legacy Field images. The team is working on a second set of images, totaling more than 5,200 Hubble exposures, in another area of the sky.

In addition, NASA’s upcoming James Webb Space Telescope will allow astronomers to push much deeper into the legacy field to reveal how the infant galaxies actually grew. Webb’s infrared coverage will go beyond the limits of Hubble and Spitzer to help astronomers identify the first galaxies in the universe.

The Hubble Legacy Fields program, supported through AR-13252 and AR-15027, is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy Inc., under NASA contract NAS 5-26555.

This article first appeared in UConn Today on May 2, 2019.

UConn Physics Professor elected to AAAS

UConn physics professor Nora Berrah has been elected to the historic and prestigious American Academy of Arts and Sciences. This year, more than 200 individuals were elected to the academy with compelling achievements in academia, business, government, and public affairs. Berrah, who was head of the physics department from 2014 to 2018, has been recognized for her distinguished contributions to the field of molecular dynamics, particularly for pioneering non-linear science using X-ray lasers, and spectroscopy using synchrotron light sources.

Using big lasers – like the Linac Coherent Light Source at SLAC National Laboratory on the campus of Stanford University, the most powerful X-ray laser in the world – Berrah’s research explores transformational changes occurring inside molecules when exposed to ultra-intense beams of light. In particular, she investigates physical molecular processes that occur at the femtosecond time scale: one quadrillionth, or one millionth of one billionth, of a second.

“The American Academy for Arts and Science honors excellence and convenes leaders to examine new ideas, and that it is a high honor bestowed on me,” Berrah said.

The 2019 class includes poet and Andrew W. Mellon Foundation president Elizabeth Alexander; chemical and biological engineer Kristi S. Anseth; artist Mark Bradford; gender theorist Judith Butler; economist Xiaohong Chen; academic leader and former Governor Mitchell E. Daniels Jr.; neuro-oncologist Robert B. Darnell; The Atlantic journalist James M. Fallows; author Jonathan Franzen; cell biologist Jennifer Lippincott-Schwartz; data science and McKinsey & Company technology expert James Manyika; former First Lady Michelle Obama; Cisco Systems business leader Charles H. Robbins; mathematician Sylvia Serfaty; philosopher Tommie Shelby; actress and playwright Anna Deavere Smith; and paleoclimatologist Lonnie G. Thompson.

This post has been transcribed from the announcement on UConn Today.