Postings created for publication in the Physics Department web page news feed.

Goodwin School 3rd grade visits the Physics Learning Labs

About one mile from the Gant plaza, Goodwin Elementary School teaches some really bright kids. On January 15, 2019, science teacher Nancy Titchen and Goodwin teachers brought the entire 3rd grade class on a field trip to the Physics Learning Labs mock-up studio for some science fun. Students enjoyed a liquid nitrogen show, witnessed quantum effects in superconducting magnetic levitation, experienced mechanics concepts such as angular momentum, and learned about vibrations and the phenomenon mechanical of resonance. The expert hands of a star team of PhD students (Erin Curry and Donal Sheets) and new laboratory technicians (James Jaconetta and Zac Transport) ensured students had a great time and learned some interesting science. Big thanks to the staff and the Goodwin School!

Nora Berrah Named 2018 AAAS Fellow

Physics professor Nora Berrah has been named a 2018 Fellow of the American Association for the Advancement of Science (AAAS). Prof. Berrah has been recognized for her distinguished contributions to the field of molecular dynamics, particularly for pioneering non-linear science using x-ray lasers and spectroscopy using synchrotron light sources.

Prof. Berrah

View full story on CLAS website.

Hands-On Approach to Physics

Step into a fall 2018 class section of PHYS 1602: Fundamentals of Physics II, and you’ll find a scene that’s far from the large introductory science lectures common on most college campuses.

Students in PHYS 1602: Fundamentals of Physics II in a new Studio Learning Lab located in the Gant Science Complex on November 5, 2018. (Bri Diaz/UConn Photo)
Anna Regan ’21 (CLAS) utilizes a whiteboard to try out
solutions during her group’s problem-solving tutorial.
(Bri Diaz/UConn Photo)

To start, the class of 30 students sits at several triangular workspaces, which today are covered with wires, coils, magnets, and power supplies that the students are using to demonstrate electromagnetic induction. At the start of class, the instructors provided a short lecture before the students set off on their own problem-solving tutorials.

Now, the instructors move from group to group, stopping to answer questions, as students shuttle back and forth to the whiteboards that line the classroom walls.

It’s a scene that’s about to become common in UConn physics courses, thanks to renovations to the Edward V. Gant Science Complex, according to Barrett Wells, professor and head of the Department of Physics.

“We’re rebuilding our classes from the ground up,” he says. “It’s the basis for what we’re going to spread across most of our introductory courses.”

The curricular redesign, says Wells, will replace the typical large-lecture format with smaller classes, utilizing five new studio-style physics learning laboratories to be added to the Gant Science Complex in 2019. These changes will promote active learning, collaborative problem solving, and faculty-student interaction, he says.

“This is a trend we’re seeing in our discipline,” Wells says. “Restricting class size to promote students actively participating during class has been documented to help them achieve and learn more across the board.”

Lecture Meets Lab

Traditional science courses, including those in physics, typically consist of three weekly lectures that hold 100 to 200 students, with once-per-week lab sections where students practice the concepts they learn in lecture.

But this setup poses challenges for professors and teaching assistants to cover the material at the same rate, often causing lecture and lab sections to fall out of synchrony, says Diego Valente, assistant professor in residence of physics and instructor of Fundamentals of Physics II.

In addition, many physics concepts are difficult to teach within the logistical setup of a lecture, and the instructors may have a difficult time knowing whether students comprehend the material, says Valente.

To combat these issues, the Department of Physics piloted redesigned versions of Fundamentals of Physics I and II, the introductory sequence for physics majors, in the spring and fall of 2018, respectively.

Graduate teaching assistant Lukasz Kuna instructs PHYS 1602: Fundamentals of Physics II in a new Studio Learning Lab located in the Gant Science Complex on November 5, 2018. (Bri Diaz/UConn Photo)
Course instructor and Ph.D. student Lukasz Kuna ’14
(CLAS), ’17 MS assists a group that includes Ian Segal-
Gould ’21 (CLAS), far right. (Bri Diaz/UConn Photo)

The new courses, which will use the physics learning laboratories, merge the lecture and lab sections into three 2-hour class periods per week that hold up to 54 students. Classes are led by the same professor and graduate students.

“[The studio classrooms] allow instructors to interact with students more frequently and discuss concepts with them in depth,” says Valente. “Previously, hands-on group work was limited to lab courses. Now, every single day in class there’s some kind of group activity where students solve problems.”

Lukasz Kuna ’14 (CLAS), ’17 MS, a physics Ph.D. student and teaching assistant for Fundamentals of Physics II, agrees.

“We can present a topic that’s somewhat difficult to understand, and then attack it from all angles,” he says. “It certainly should be the way physics is taught, because it prepares you for more difficult problem solving.”

A Learning Community

The studio learning model also increases the amount of time students spend working collaboratively, says Valente.

Ian Segal-Gould ’21 (CLAS), a physics and mathematics major enrolled in Fundamentals of Physics II, says that the class fosters the collaborative problem-solving that is expected of professional physicists.

“In lecture-based courses, people look at the professor,” he says. “They’re not talking to each other, they’re not solving the problem—they’re looking at somebody else solve the problem. In the real world, physicists work together, so I think the interactive component to this course is on the right track.”

Physics major Megan Sturm ’21 (CLAS) says that working in small groups helps build camaraderie and exposes her to new ideas.

“I know at least half of the class, and it’s way easier to learn that way,” she says. “Someone else will ask a question or say something during the lab that I wouldn’t have even thought about.”

Sturm also says that she enjoys the frequency of interaction with the instructors, noting that Valente circulates through the class, asks students specific questions, and engages in hands-on work with them.

Physics major Megan Strum, far left, in PHYS 1602: Fundamentals of Physics II in a new Studio Learning Lab located in the Gant Science Complex on November 5, 2018. (Bri Diaz/UConn Photo)
Physics major Megan Sturm ’21 (CLAS) says that working
in small groups helps build camaraderie and exposes her to
new ideas. (Bri Diaz/UConn Photo)

“He’s way more approachable, so when I’m having trouble with things, I don’t have a problem going to office hours,” she says.

Kuna, who has taught for three years in the Department, says that the faculty-student interaction helps him better gauge how students are learning the material.

“Traditionally, if you’re teaching in a large lecture, you somewhat lose the students when they go to lab,” he says. “Here, you get to see where your class stands.”

New Opportunities

With a target completion date for phase one renovations set for fall of 2019, the Department is gearing up to redesign other introductory courses, including Physics for Engineers and Physics with Calculus, a general education sequence taken by many pre-med students.

“This is important because we offer courses to majors across the University, and we’re teaching more students each year,” Wells says.

“Our goal is to develop not just comprehension of physical concepts, but also transferable skills–things like communication through group work and computer programming, which students can use in their professional lives,” adds Valente.

He says that these investments in teaching and infrastructure give UConn an advantage in addressing instructional issues common at institutions across the United States.

“This is a really large-scale venture we are doing, something a lot of comparable institutions aren’t able to do,” Valente says. “It shows that UConn is making a big commitment to physics education.”

By: Bri Diaz, College of Liberal Arts and Sciences
This article was originally published in the UConn CLAS Newswletter, November 28 issue

Faculty Profile: UConn Astrophysicist Cara Battersby

Meet the Researcher: UConn Astrophysicist Cara Battersby

UConn astrophysicist, Cara Battersby sits in an office in front of poster of galaxies.

UConn astrophysicist, Cara Battersby. (Carson Stifel/UConn Photo)

A young Cara Battersby once scrawled out the phrase “Science is curious” in a school project about what she wanted to do when she grew up.

This simple phrase still captures Battersby’s outlook on her research about our universe.

Recently shortlisted for the 2018 Nature Research Inspiring Science Award, Battersby has been working on several projects aimed at unfolding some of the most compelling mysteries of galaxies near and far.

“I’m really interested in how stars are born,” Battersby says. “They’re the source of all life on Earth.”

Many of the “laws” we know about how stars are formed are based exclusively on observations of our own galaxy. Because we don’t have as much information about how stars form in other galaxies with different conditions, these laws likely don’t apply as well as we think they should.

Battersby is leading an international team of over 20 scientists to map the center of the Milky Way Galaxy using the Submillimeter Array in Hawaii, in a large survey called CMZoom. She was recently awarded a National Science Foundation grant to follow-up on this survey and create a 3D computer modeled map of the center of the Milky Way Galaxy.

The center of our galaxy has extreme conditions similar to those in other far-off galaxies that are less easily studied, so the Milky Way is an important laboratory for understanding the physics of star formation in extreme conditions.

By mapping out this region in our own galactic backyard, Battersby will be able to form a better idea of how stars form in more remote areas of the universe.

“I love that astrophysics is one of the fields where I can get my hands into everything,” Battersby says. “Stars are something real that you can actually see and study the physics of.”

Battersby is also investigating the “bones” of the Milky Way. Working with researchers from Harvard University, she is looking at how some unusually long clouds could be clues to constructing a more accurate picture of our galaxy.

“Because of the size of our galaxy, it’s infeasible to send a satellite up there to take a picture,” she says.

Since we are living within the Milky Way it is much harder for us to get a clear idea of what it looks like. We know that the Milky Way is a spiral galaxy, but we don’t yet know how many “arms” the spiral has and if it’s even a well-defined spiral.

These kinds of celestial mysteries have long fascinated Battersby.

Battersby says she would “devour” astronomy books and magazines her parents gave her, but it wasn’t until college that her passion truly developed.

She did her Ph.D. thesis at the University of Colorado on high-mass stars being formed on the disk of our galaxy. During this research she made an astounding discovery that every high-density cloud in space is already in some phase of forming a star, a process that takes millions of years.

This led her to conclude that star formation starts as the cloud is collapsing bit by bit, modifying previous ideas of the timeline of this process.

“If you look at something new in a way no one’s looked at it before, the universe has a great way of surprising us,” Battersby says.

View full story on UConn Today.


By: Anna Zarra Aldrich ’20 (CLAS), Office of the Vice President for Research



Welcoming Barrett Wells as new department head


In August 2018, Professor Barrett Wells entered as the new head of the Physics department, following Professor Nora Berrah.  Barrett is an experimental condensed matter physicists with a robust research program involved in both synthesis and advanced experimentation around novel phases of quantum materials. Barrett brings to the department strong administrative talent, having served a long term as the associate department head for undergraduate affairs as well as chairing many important committees since his arrival at UConn.

Learn more about Professor Wells and the physics department from a recent interview produced by the College of Liberal Arts and Sciences.

UConn Physics major wins national recognition for research

Connor Occhialini – Finalist 2018 LeRoy Apker Undergraduate Achievements Award

by Jason Hancock

One of our star undergraduates, Connor Occhialini, has won national recognition as a finalist in the 2018 LeRoy Apker Undergraduate Achievements Award competition for his research in the UConn Physics department. The honor and distinction is awarded not only for the excellent research achievements of the student, but also for the department that provides the supportive environment and opportunities for students to excel in research. Connor is in fact the second Apker finalist in three years’ time (Michael Cantara was a 2016 Apker finalist). Connor graduated with a BS in Physics from UConn in May 2018 and stayed on as a researcher during summer 2018. During his time here, he developed theoretical models, helped build a pump-probe laser system, and carried out advanced analysis of X-ray scattering data which revealed a new context for an unusual phenomenon – negative thermal expansion. With these outstanding achievements, the department presented Connor’s nomination to the 2018 LeRoy Apker award committee of the American Physical Society. Connor was selected to be one of only four Apker finalists from all PhD-granting institutions in the US. With this prestigious honor, the department receives a plaque and a $1000 award to support undergraduate research. Connor is now a PhD student in the Physics Department at MIT.

Workshop ‘Dynamic Quantum Matter’ organized by UConn faculty

Dynamic Quantum Matter, Entangled orders and Quantum Criticality Workshop
Dates: June 18- June 19, 2018


UConn, NSF, Nordita, Villum Center for Dirac Materials, Institute for Materials Science – Los Alamos, Wiley Publishers


The conference will focus on entangled and non-equilibrium orders in quantum materials. The 21st century marked the revolution of probing matter at the nano- to mesoscale and these developments continue to be the focus of active research. We now witness equally powerful developments occurring in our understanding, ability to probe, and manipulate quantum matter, in entangled orders and novel states, in the time domain. Recent progress in experimental techniques including x-ray optics, optical pumping, time resolved spectroscopies (ARPES optics), and in cold-atom systems has led to a resurgence of interest in the non-equilibrium aspect of quantum dynamics. The novel entangled orders that have nonzero “overlap” with more than one order parameter also have emerged as an exciting new direction for research in quantum matter. Entangled orders go beyond the conventional orders such as density and spin, and significantly expand the possible condensates we can observe. It is only because of the lack of experimental control, resolution, theoretical framework, and computational power, that the realm of entangled and quantum non-equilibrium remained largely unexplored until now. The time has come for us to turn full attention to these phenomena. Specific topics include: superconductivity and dynamics near quantum criticality, composite orders in correlated materials, effects of strain on quantum critical points, and superconductivity in STO. This conference will have a format of topical lectures, while leaving ample time for discussions.


Gurney’s Resorts | Newport, RI

Physics undergrad is the recipient of 2018 Mark Miller research award

Physics major Brenna Robertson has been selected as the recipient of the 2018 Mark Miller Undergraduate Research Award. Brenna’s proposal, which focuses on modeling supermassive black hole spin using spectral emission diagrams, was selected from among a strong pool of applicants. Brenna Robertson is working with Prof. Jonathan Trump.

The Mark Miller Award is a stipend to allow a student to remain in Storrs over the Summer session to work on a research project with a faculty member of the Physics Department. It was created through a donation made by Mark E. Miller, a UConn physics major alum.

NASA awards to two physics undergraduate students

Undergraduate Physics Majors, Sam Cutler and Anthony (Josh) Machado, recently received awards from the NASA Connecticut Space Grant Consortium.

Awards recipients Sam Cutler (right) and Josh Machado

Sam was awarded an Undergraduate Research Fellowship to perform research at UConn this summer working with Prof. Kate Whitaker. The title of his research project is “Examining High Redshift Rotation Curve Outside the Local Universe”.

Josh was awarded the Undergraduate Scholarship by the NASA Connecticut Space Grant Consortium, and will be performing astrophysics research this summer at UConn working with Prof. Cara Battersby.