Headlines

Reports on recent events within the larger scientific world, with a member of the department explaining the science and commenting on its significance.

Undergraduate Researcher Nicole Khusid featured in UConn Today

Physics major Nicole Khusid, a rising senior at UConn, was featured in a UConn Today article about her research. Nicole has been working on gravitional lensing of distant sources of gravitational waves, seeking to understand their multimessenger signals and detectability by future astrophysics facilities. Nicole was awarded a SURF (Summer Undergraduate Research Fund) award to perform this research wtih Prof. Chiara Mingarelli. For the full story, see the article in UConn Today.

Standard model challenged by new measurement

The following article appeared in UConn Today on May 20, 2021 under by-line  

Physicists are one step closer to describing an anomaly, called the Muon g-2, that could challenge the fundamental laws of physics. It seems the muon may be breaking what have been understood as the laws of physics, and the findings announced on April 7th were met with much excitement and speculation at what this might mean. UConn physics researchers Professor Thomas Blum and Assistant Professor Luchang Jin helped pioneer the theoretical physics behind the findings, and they recently met with UConn Today to help explain the excitement.

What is a muon, and how do you study them?

Blum: A muon is a “fundamental particle,” meaning it’s an elementary particle like an electron or a photon. Muons are unstable, so they don’t live very long. Unlike an electron, where we can focus on them as long as we want and do measurements, we only have a little bit of time to take measurements of muons.

The way researchers perform the experiment is by slamming particles into other particles to create the muons, and they eventually collect them into a beam. This beam of muons travels at almost the speed of light where they live a little bit longer than they would if they were at rest. That’s Einstein’s theory of relativity in action.

The researchers put the muons into what’s called a storage ring where, eventually, they decay into other particles, and it’s those other particles that are detected in the experiment.

Muons have a property called a magnetic moment, which is like a little compass that points in the direction of the magnetic field that it’s in. In the storage ring, there’s a uniform magnetic field, and as the muons are going around in the storage ring, their magnetic moment, which would be perfectly aligned with their direction of travel if there were no anomaly, actually precesses with respect to the direction of travel as it goes around the ring, because of the interaction with the magnetic field.

It’s that precession that they’re measuring, because the precession is proportional to the strength of the magnetic moment. We can measure this magnetic moment extremely precisely in experiments, and we can calculate its value theoretically very precisely, to less than one-half part per million. Then we can compare the two and see how well they agree.

Can you explain the excitement surrounding these results?

Blum: For a long time — almost 20 years — the best measurement had been done at Brookhaven National Lab on Long Island, where they measured this magnetic moment very precisely, and found that it didn’t agree with our best fundamental theory, which is called the Standard Model of particle physics. The discrepancy wasn’t big enough to say that there was definitely something wrong with the Standard Model or not.

The new results are from a new experiment done to measure the magnetic moment even more precisely. That effort has been going on at Fermilab outside of Chicago for a few years now, and they just announced these results in early April. Their measurement is completely compatible with the Brookhaven value, and if you take the two together, then the disagreement with the Standard Model gets even worse: it now stands at 4.2 standard deviations.

People are very excited, because this could possibly signal that there is new physics in the universe that that we don’t know about yet. The new physics could be new particles that we’ve never seen before, or new interactions beyond the ones we know about already and that could explain the difference between what’s measured and what’s calculated. So that’s what everybody’s excited about.

Can you tell us about the Standard Model?

Jin: The Standard Model describes electromagnetic interactions between charged particles. It also describes the so called weak interactions, which is responsible for nuclear decay. The weak interactions become more important in high energy collisions, and unifies with the electromagnetic interactions. Lastly, the Standard Model describes the strong interactions, which bind quarks into nucleons and nuclei.

Basically, the Standard Model describes everything around us, ranging from things happening in our daily lives to the high-energy proton collisions in the Large Hadron Collider, with the major exception being gravity, which is only sort of visible, but we can feel it because gravity forces always add up, and there are a lot of other massive objects around us. It also doesn’t include dark matter, if we actually do have that in the universe.

People believe, and I think this is really true, that the Standard Model cannot possibly describe everything to extremely high precision, especially when we accelerate subatomic particles to very high energies. However, it was not very clear how high the energy or the precision has to be before we can see some discrepancies. We know the upper bound — usually referred to as the Planck scale, where the Standard Model has to fail due to the omission of gravity. But the Planck scale is so high that there is little hope to be able to perform experiments at that high energy. It is very nice to find a concrete example that the Standard Model actually misses something, and the g-2 anomaly is a very good candidate.

What roles did you each have in this research?

Jin: Theoretically, we decomposed the g-2 into contributions from the different types of interactions. At present, most of the values are obtained by analytic calculations of the various contributions. Other experimentally measurable quantities that have little to do with the muon magnetic moment experiments in terms of what they measure can be related through the Standard Model to the Muon g-2 value. So, to a large extent, this can still be viewed as a theory prediction. Blum pioneered the first lattice calculation for a certain g-2 contribution called the hadronic vacuum polarization, which doesn’t use experimental data at all.

Blum: Jin came up with new methods to compute the Hadronic Light-by-Light contribution which allowed us – with colleagues at Brookhaven National Lab, Columbia University, and Nagoya University – to compute it completely for the first time without experimental input. What Jin and I are doing, along with a host of other theorists around the world, is trying to better calculate the value of this magnetic moment from the theory side, so that we can have an even better comparison with the experimental measurements.

Jin: The Standard Model itself has a few parameters, which for most, we know very, very precisely. This includes the masses of the fundamental particles. In principle, as one might imagine, the theory prediction of the Muon g-2 is a very complicated expression just in terms of these numbers. We are not able to do that yet, but maybe soon we can. We expect that if we continue to improve our calculations, and as computers continue to get faster, the last digit determination may become more accurate.

To dig deeper into the science behind the findings, read Blum and Jin’s feature article on the findings in CERN Courier.

An anomalous moment for the muon

Mark Rayner/CERN

The Fermilab E989 experiment announced the first new result on the muon’s anomalous magnetic moment in almost 20 years. The new measurement, combined with Brookhaven’s E821, has increased the discrepancy with the Standard Model value to 4.2 standard deviations. UConn Professors Tom Blum and Luchang Jin explain the theory calculations in a feature story in the Cern Courier.

The passing of Dr. David Katzenstein, a friend and benefactor of the UConn Department of Physics

Dr. David Katzenstein, a friend, and benefactor of the UConn Department of Physics, passed away on January 25, 2021 due to Covid-19. David was the son of Henry Katzenstein, the first Physics Ph.D. from UConn and a major benefactor of our Department. Currently, both the annual Katzenstein Distinguished Lecture and the Katzenstein Prize for a senior, undergraduate paper were endowed by the Katzenstein family.

David himself was an Emeritus Professor of Medicine at the Stanford University Medical School, specializing in Infectious Diseases and Geographic Medicine. He focused on the treatment and prevention of HIV-AIDS, particularly in sub-Saharan Africa. He died in Harare, Zimbabwe where he had moved in 2016 to continue his important work after his retirement from Stanford.

Obituary in NYTimes: David Katzenstein, AIDS Researcher With Focus on Africa, Dies at 69

A Signal from Beyond

Looking for ripples in the fabric of spacetime.

UConn astrophysicist Chiara Mingarelli is part of a team of researchers who recently published data on a hint of a signal that sent ripples of excitement through the physics community. These monumental findings are the culmination of twelve and a half years of data gathered from NANOGrav — a network of pulsars across the galaxy — all in the hopes of detecting gravitational waves.

Gravitational waves are generated when galaxies merge and supermassive black holes at their centers collide and send low-frequency gravitational waves out into the universe. The team thinks the source of the signal could be gravitational waves, but it will take about 2 more years of data to be sure.

The findings sparked the interest of other physicists with their own speculations about the signal, such as cosmic strings or primordial black holes. Though still a couple of years away, Mingarelli says the final results could also help test General Relativity or even open the door to entirely new physics.

This article first appeared on UConn Today, February 15, 2021

UConn seismometer detects Puerto Rico event

 

The Geophysics research group (Prof. Vernon Cormier and students) operate a seismic wave station that continuously monitors vibrations in the earth’s crust, many of which arise from seismic events that happen far away. These waves travel through the deep earth, and eventually make their way to the surface where they are detected. The above figures show high frequency and low frequency filtered seismograms recorded at UConn’s seismic station for the vertical component of ground motion from the earthquakes in Puerto Rico on January 7, 2020.  The 3 bursts of energy are P and S elastic waves, followed by a T wave, which propagates as an acoustic wave in the ocean.  In the high frequency seismogram (first figure), the large red trace is the main shock and the black trace below it is an aftershock. In the low frequency filtered seismogram (second figure), the largest energy propagates as a surface wave trapped in Earth’s crust and upper most mantle, with energy exponentially decaying into the mantle. Amplitude scale for ground particle velocity is shown by a bar in the upper left corner.

Research Spotlight: Exploring the nature of the universe with Dr. Thomas Blum

The Daily Campus published an article highlighting the research of Prof. Thomas Blum about Quantum Chromodynamics, a theory which describes the interactions between elementary particles. The development of this theory could help further understanding of the Standard Model of particle physics. The Standard Model is what physicists use to describe the fundamental building blocks of everything in the universe.

For more information follow the link.

Daniel McCarron wins NSF Early Career Award

Daniel McCarron, assistant professor of physics, the College of Liberal Arts and Sciences, will receive $645,000 over five years for his work on the development of techniques to trap large groups of molecules and cool them to temperatures near absolute zero. The possible control of molecules at this low temperature provides access to new research applications, such as quantum computers that can leverage the laws of quantum mechanics to outperform classical computers.

The NSF Faculty Early Career Development (CAREER) Program supports early-career faculty who have the potential to serve as academic role models in research and education, and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty build a firm foundation for a lifetime of leadership in integrating education and research.

McCarron was one of 8 junior faculty at the University of Connecticut to receive the prestigious Early Career awards from NSF in 2019. For a description of all 8 awards, see this recent article published in UConn Today.

UConn Astronomers React to First Photo of a Black Hole

credit: Event Horizon Telescope collaboration

This image is the first ever taken of a black hole, captured by the Event Horizon Telescope (EHT) project. The black center is a direct view of the event horizon of a supermassive black hole with a mass of 6.5 billion times the Sun, lying at the center of the Virgo cluster of galaxies. The bright ring is emission from hot gas just above the event horizon, with an asymmetric shape caused by gravitational lensing of light in the strong gravity of the black hole. The EHT collaboration captured the image using a network of 8 radio telescopes that spanned the Earth, effectively creating a planet-sized interferometer.

For more information, see the full NSF press release:

This result directly impacts research in galaxy evolution and cosmology that is being carried out at UConn. The following comments from UConn Astrophysics researchers indicate the level of interest that this result has generated within the international Astrophysics community.

This is a stunning technical achievement. Supermassive black holes are the most extreme objects in the Universe, bizarre rips in spacetime that lie in the center of every massive galaxy. But despite their extreme properties, black holes have a remarkably simple mathematical description, with just a few numbers describing all of their vital properties: mass, size, and spin. Until now, the only way to measure black holes was through indirect methods, like my own research program that uses the timing of light echoes in the surrounding gas. The Event Horizon Telescope black hole image is a tremendous first step in a new understanding of extreme gravity and the detailed astrophysics of black holes. – Jonathan Trump, Assistant Professor
I am fascinated by this result and how we can actually see a direct image of a black hole that is a trillion times our distance to the Sun. This is truly an amazing result for human beings achieved within the limitation of our observational instruments. As an observational astronomer who works with black holes, this result also opens up new possibilities to learn about their unknown features such as black hole spin that could revolutionize our understanding of black hole physics. – Yasaman Homayouni, Graduate Student
This result is a beautiful demonstration of what is possible when the global community works in concert towards a scientific goal. Sometimes the greatest discoveries are not found by the biggest new telescopes in space, but through creative thinking, years of dedicated effort, and big data techniques, building upon what we have here on Earth. – Cara Battersby, Assistant Professor
It is truly extraordinary to be able to provide this new evidence for Einstein’s ideas on space and time through observations made no less than one hundred years since he first proposed them. As to the discovery itself, there are two aspects to black holes, one is that they pull everything in, and the other is that they do not let anything out. With nothing being able to get out, they thus look black to an observer on the outside, to thereby give them their black hole name. Now for many years we have had evidence of things falling into black holes, but had never previously had any evidence that things cannot get out. These new data show a fireball ring of things falling in, with the ring surrounding a black space in the center where nothing can get out. We thus confirm that indeed nothing can escape a black hole. – Philip Mannheim, Professor

For more about this topic, see this recent article in the Daily Campus, UConn Astronomy Community Responds Joyously to M87 Black Hole Image.

2 for the price of 1: UConn researcher finds new mechanism making double ionization an efficient process

Schematic of dICD

An international research team headed by Dr. Aaron LaForge from the research group of Prof. Nora Berrah in the Physics department at UConn has recently discovered a new type of decay mechanism leading to highly efficient double ionization in weakly-bound systems. The team has published its results in the science journal “Nature Physics”.

Ionization is a fundamental process where energetic photons or particles strip an electron from an atom or molecule. Normally, a much weaker process is double ionization, where two electrons are simultaneously emitted, since it requires higher-order interactions such as electron correlation. However, these new results show that double ionization doesn’t necessarily need to be a minor effect and can even be the primary ionization mechanism thereby getting two electrons for the price of one.

The enhancement is likely due to double ionization proceeding through a new type of energy transfer process termed double intermolecular Coulombic decay, or dICD, for short. The experiments were performed at the synchrotron, Elettra, in Trieste, Italy. There, electrons are accelerated to near the speed of light and then rapidly undulated through an alternating magnet field. In this way, the electrons emit short wavelength light which is needed to trigger dICD. The researchers produced superfluid helium droplets, which are cryogenic, nanometer-sized matrices capable of attaching various atomic and molecular species in order to perform precise spectroscopic measurements. In this case, dimers consisting of two alkali metal atoms were attached to the surface of helium droplets. The dICD process, schematically shown in Fig. 1, occurs through an electronically excited helium atom (red), produced by the synchrotron radiation, interacting with the neighboring alkali dimer (blue and white) resulting in energy transfer and double ionization. Although an alkali dimer attached to a helium nanodroplet is a model case, dICD is potentially relevant for any system where it is energetically allowed.

dICD belongs to a special class of decay mechanisms where energy is exchanged between neighboring atoms or molecules leading to enhanced ionization rates. Seemingly ubiquitous in weakly-bound, condensed phase systems such as van der Waals clusters or hydrogen-bonded networks like water, these processes can contribute to radiation damage of biological systems by producing particularly harmful low-energy electrons. dICD could strongly enhance such effects through the production of two low-energy electrons for each intermolecular decay.

Original publication:

A. C. LaForge, M. Shcherbinin, F. Stienkemeier, R. Richter, R. Moshammer, T. Pfeifer & M. Mudrich, “Highly efficient double ionization of mixed alkali dimers by intermolecular Coulombic decay”, Nature Physics (2019) DOI: 10.1038/s41567-018-0376-5