Events

Reports of events hosted by the physics department, such as colloquia, special seminars, and outreach programs offered to the public.

Professor Jocelyn Bell Burnell – 2019 Katzenstein Lecturer

The UConn Physics Department is delighted to announce that our 2019 Distinguished Katzenstein Lecturer will be

Professor Dame Jocelyn Bell Burnell
Friday, November 8th, 2019
04:00 PM – 05:00 PM
Storrs Campus, Student Union Theater

Professor Dame Jocelyn Bell Burnell (pictured at left) is world-famous for her discovery of pulsars in 1967. Pulsars are a special type of neutron star, the rotating dense remnant of a massive star. Pulsars have highly magnetic surfaces and emit a beam of electromagnetic radiation along their poles. This beam of light moves into and out of our line-of-sight at quick, constant intervals, appearing as a regular “pulse” of light.

At the time of this discovery, Bell Burnell was a graduate student at the University of Cambridge and worked with her supervisor, Anthony Hewish, to construct the Interplanetary Scintillation Array to study another class of objects called quasars. In the course of her daily detailed analysis, she noticed a strange “pulsing” signal in her data. Jokingly dubbed “Little Green Man 1” (LGM-1), further data-taking and analysis revealed this signal to be rapidly spinning neutron star, eventually dubbed a “pulsar.”

Bell Burnell’s discovery is considered one of the most important achievements of the 20th century and was recognized by a Nobel Prize in Physics in 1974, awarded to her supervisor Anthony Hewish as well as to astronomer Martin Ryle. While many condemned the omission of Bell Burnell for the award, she rose above, graciously stating, “I believe it would demean Nobel Prizes if they were awarded to research students, except in very exceptional cases, and I do not believe this is one of them. Finally, I am not myself upset about it – after all, I am in good company, am I not!”

Professor Dame Jocelyn Bell Burnell has a highly distinguished career. Some notable highlights include serving as head of the Royal Astronomical Society and as the first female president of both the Institute of Physics and The Royal Society of Edinburgh. She was appointed Dame Commander of the Order of the British Empire for services to astronomy in 2007. Her story has been featured in a number of works, including the BBC Four’s Beautiful Minds and BBC Two’s Horizon. Bell Burnell is currently the chancellor of the University of Dundee in Scotland and a visiting professor of astrophysics at the University of Oxford.

In 2018 Bell Burnell was awarded a Special Breakthrough Prize in Fundamental Physics. Only four such prizes have been awarded, one to Stephen Hawking, one to the CERN scientists who discovered the Higgs Boson, and one to the LIGO team for their detection of gravitational waves. This award recognizes her discovery of pulsars and “a lifetime of inspiring scientific leadership.” In addition to her research accolades, her teaching, leadership, and work to lift up women and minorities in science is without parallel.

Greetings from the Department Head

New building, new teaching approach, new people – there is a lot of change and excitement in the air for the Physics Department in 2019. The most obvious change is that physics has moved into a newly renovated building. What most alumni will remember as the Math Building has been taken down to its frame and rebuilt as the new physics building, formally Gant South. The new building features large windows with lots of light, revamped teaching labs, and a theory suite at the east end of each hallway. There are also plenty of meeting rooms and nooks, complete with writing spaces, to foster spontaneous discussions. We moved into the offices and teaching spaces at the start of fall semester, whereas the research lab relocations are ongoing as I write.

Along with the new building comes new teaching laboratories. The most striking of these are our studio-labs, located in the Gant Plaza building in the center of the Gant Complex. These studio labs have allowed us to redesign how we teach our introductory physics with calculus courses. Instead of three one-hour lectures per week and a three hour lab, there are now three two-hour meetings per week with mixed activities. The rooms are arranged with groups sitting around tables, and class time is spent on group efforts to explore concepts, solve problems, and conduct laboratory measurements. We have been developing this program using the Phys 1601 and 1602 courses for physics majors. This fall we rolled out the first of four other courses to be taught in this method with Phys 1501, to be followed in successive semesters by Phys 1502, Phys 1401, and Phys 1402.

If your travels bring you to the Storrs area, please stop by our new building. I will give anyone interested a tour myself if my schedule allows.

We also have several new faces around the department this fall. We have hired two new assistant professors in astrophysics, Chiara Mingarelli and Daniel Angles-Alcazar. Both have been hired in a bridge program with the Flatiron Institute of the Simons Foundation. Simons is the leading philanthropic foundation focused on science, and the four centers hosted at the Flatiron are world leaders in computational methods. We also have two new full-time teaching faculty, Niraj Ghimire and Sarah Trallero. Niraj was our own Ph.D. student who had previously worked on our Studio Physics development team. Sarah has been working with our teaching lab support team, with previous experience at Kansas State teaching studio-style physics courses. We have several new members of our teaching lab support team, with three new technicians. Zach Transport and James Jaconetta began working with us last January, and Hannah Morrill joined us over the summer. And finally, while I am not a new face, I took over as department head about a year ago and this is my first go-round writing a welcome to our newsletter. I would like to personally thank Professor Nora Berrah, our past department head, for putting our department on a firm footing that has made my job much easier.

Barry Wells

International Summer School “Strong interactions beyond simple factorization”

May 27-June 5 UConn Physics Department hosted an international summer school Strong interactions beyond simple factorization: collectivity at high energy from initial to final state. The school was supported by an NSF grant to Prof. Kovner and was devoted to modern approaches to the physics of high energy hadronic and heavy ion collisions.

2019 Pollack Lecture

On April 11th and 12 of 2019 Prof. Paul Corkum of the Joint Attosecond Laboratory (University of Ottawa and the National Research Council of Canada) visited the department. Prof. Corkum’s main area of research is on the interaction of ultrashort laser pulses with matter broadly defined. His most notable contribution is perhaps the discovery of the so-called three-step model, which has become the basis of the emerging field of attosecond science. Attoseconds, equal to 1 billionth of 1 billionth of a second (10-18 s) is the shortest time scale ever measured or controlled by humans and is at the forefront of modern optics.

Prof. Corkum is a member of the US National Academy of Sciences, the Russian Academy of Sciences, the Austrian Academy of Sciences, the Royal Canadian Academy of Sciences and the Royal Society of London. He has received many accolades throughout his career, including the Thomson Reuters Citation Laureate which is awarded to researchers who are “of Nobel class” and likely to earn the Nobel someday and the Order of Canada.

On April 12, Prof. Corkum presented the annual Edward Pollack Distinguished Lecture, entitled “Attosecond Pulses Generated in Gases and Solids”. This lecture is supported by an endowment established by the family of the late Professor Edward Pollack in 2005. Ed’s family, friends and colleagues made contributions in his memory. This special colloquium provides a presentation in Ed’s honor in the field of atomic, molecular and optical physics, his area of research expertise. This year Mrs. Rita Pollack and their three children: Cindy [U.S. Government civil servant], Lois [now a professor of applied physics at Cornell], and Howard [professor of modern languages (German) at dePauw University in Indiana] were all in attendance.

Below, dinner with the Pollack family members, UConn faculty, and guests.

Clockwise from left: Victoria Starzef, George Gibson, Win Smith, Anne Smith, Margaret Kessel, Quentin Kessel, Nadia Corkum, Paul Corkum, Robin Côté, Lois Pollack, Cindy Blazar, Rita Pollack, Howard Pollack-Milgate, Sophie Pollack-Milgate, and Sarah Trallero

 

Charles Reynolds Lecture 2018: Prof Andrew Millis

The 2018 Reynolds lecture speaker was Prof Andrew Millis, a Professor of Physics at Columbia University and a co-Director of Center for Computational Quantum Physics at the Flatiron Institute. Dr. Millis’s research focus is theoretical condensed matter physics. He is the leading authority in theory of correlated materials, application of new theoretical ideas to actual experiments on novel materials including high temperature superconductors. His theory of ‘colossal’ magnetoresistance seen in manganites has been the key theoretical advance that enabled a complete understanding of these materials. Andrew has also been working on quasi one-dimensional conductors and heavy fermion compounds. The lecture, entitled “Meeting Dirac’s challenge: from quantum entanglement to materials theory” presented a broad-stroke account of developments in humankind’s capability of explaining and predicting materials properties through advanced computational approaches.

Dirac wrote 90 years ago: “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.’’ Professor Millis described the development of the new computational tools to meet the challenge laid out by Dirac in our quest for effective predictive tools for quantum materials. Center for Computational Quantum Physics, The Flatiron Institute is superbly positioned to address this challenge. The lecture was held on March 15 2019 and was well attended with a large number of undergraduate and graduate students present.

Contributed by Alexander Balatsky, edited by Jason Hancock

Goodwin School 3rd grade visits the Physics Learning Labs

About one mile from the Gant plaza, Goodwin Elementary School teaches some really bright kids. On January 15, 2019, science teacher Nancy Titchen and Goodwin teachers brought the entire 3rd grade class on a field trip to the Physics Learning Labs mock-up studio for some science fun. Students enjoyed a liquid nitrogen show, witnessed quantum effects in superconducting magnetic levitation, experienced mechanics concepts such as angular momentum, and learned about vibrations and the phenomenon mechanical of resonance. The expert hands of a star team of PhD students (Erin Curry and Donal Sheets) and new laboratory technicians (James Jaconetta and Zac Transport) ensured students had a great time and learned some interesting science. Big thanks to the staff and the Goodwin School!

Professor Rainer Weiss: Katzenstein Distinguished Lecture

The Katzenstein Distinguished Lectures series continued in the 2018 academic year with its twenty second Nobel Laureate lecturer, with an October 26, 2018 lecture by Professor Rainer Weiss of the Massachusetts Institute of Technology.

The title of Professor Weiss’ talk was “Exploration of the Universe with Gravitational Waves”, with abstract:

The observations of gravitational waves from the merger of binary black holes and from a binary neutron star coalescence followed by a set of astronomical measurements is an example of investigating the universe by “multi-messenger” astronomy. Gravitational waves will allow us to observe phenomena we already know in new ways as well as to test General Relativity in the limit of strong gravitational interactions – the dynamics of massive bodies traveling at relativistic speeds in a highly curved space-time. Since the gravitational waves are due to accelerating masses while electromagnetic waves are caused by accelerating charges, it is reasonable to expect new classes of sources to be detected by gravitational waves as well. The lecture will start with some basic concepts of gravitational waves, briefly describe the instruments and the methods for data analysis that enable the measurement of gravitational wave strains of one part in 10 to the 21, and then present the results of recent runs. The lecture will end with a vision for the future of gravitational wave astrophysics and astronomy.

Students discuss gravitational waves with Prof. Weiss (MIT) following lecture

In 2017 Professor Weiss shared the Nobel Prize in Physics with Professor Kip Thorne and Professor Barry Barish for their epochal discovery of gravitational waves, waves that had been predicted by Albert Einstein using his General Theory of Relativity no less than a hundred years before.

Professor Rainer Weiss received his BS degree from MIT in 1955 and his PhD from MIT in 1962. He was on the faculty of Tufts University from 1960 to 1962, and did post-doctoral research at Princeton from 1962 to 1964. He joined the MIT faculty in 1964 and remained a regular faculty member there until he became emeritus in 2001. Along with Kip Thorne, the late Ronald Drever and Barry Barish he spearheaded the development of LIGO, the Laser Interferometer Gravitational-Wave Observatory, a set of two interferometers, one located in Louisiana and the other in Washington State. The interferometers would jointly look for gravitational wave signals seen in coincidence, and in September 2015 made the very first detection of gravity waves. At Louisiana State University he has served as an Adjunct Professor of Physics since 2001. As well as research in gravity waves Professor Weiss’ other primary interests are in atomic clocks and cosmic microwave background measurements.

Dr. Weiss had previously visited the University of Connecticut in Fall 2015 as part of a lecture series that fall given at the University of Connecticut in commemoration of the hundredth year of Einstein’s development of his Theory of General Relativity. At that time Dr. Weiss described the ongoing search at LIGO for gravity waves produced by the merger of two black holes. And the initial announcement of a discovery was made in February 2016, shortly after Dr. Weiss’s visit to the University of Connecticut. It is also of interest to note that Dr. Shep Doeleman of Harvard University was another of the speakers at the Fall 2015 University of Connecticut Einstein commemoration. He talked about the ongoing effort to actually detect the event horizons associated with black holes using the Event Horizon Telescope, black holes being yet another prediction of Einstein’s Theory that was also one hundred years old. And in 2019 Dr. Doeleman announced the very the first direct detection of a black hole event horizon. Thus, with the first detection of gravity waves produced by black hole mergers and then the detection of an event horizon itself, the theory of black holes is put on a very secure observational foundation. This lecture can be viewed: https://www.uctv14.com/ucspanblog/2018/12/10/katzenstein-distinguished-lecture-october-26th-2018?rq=Katzenstein

Workshop ‘Dynamic Quantum Matter’ organized by UConn faculty

Dynamic Quantum Matter, Entangled orders and Quantum Criticality Workshop
Dates: June 18- June 19, 2018

Sponsors

UConn, NSF, Nordita, Villum Center for Dirac Materials, Institute for Materials Science – Los Alamos, Wiley Publishers
           

Scope

The conference will focus on entangled and non-equilibrium orders in quantum materials. The 21st century marked the revolution of probing matter at the nano- to mesoscale and these developments continue to be the focus of active research. We now witness equally powerful developments occurring in our understanding, ability to probe, and manipulate quantum matter, in entangled orders and novel states, in the time domain. Recent progress in experimental techniques including x-ray optics, optical pumping, time resolved spectroscopies (ARPES optics), and in cold-atom systems has led to a resurgence of interest in the non-equilibrium aspect of quantum dynamics. The novel entangled orders that have nonzero “overlap” with more than one order parameter also have emerged as an exciting new direction for research in quantum matter. Entangled orders go beyond the conventional orders such as density and spin, and significantly expand the possible condensates we can observe. It is only because of the lack of experimental control, resolution, theoretical framework, and computational power, that the realm of entangled and quantum non-equilibrium remained largely unexplored until now. The time has come for us to turn full attention to these phenomena. Specific topics include: superconductivity and dynamics near quantum criticality, composite orders in correlated materials, effects of strain on quantum critical points, and superconductivity in STO. This conference will have a format of topical lectures, while leaving ample time for discussions.

Venue

Gurney’s Resorts | Newport, RI

Annual Research Poster Day

The Physics Department Graduate Student Association, in collaboration with the faculty, organized the Annual Research Poster Day which was held this year on March 23, 2018.

Erin Curry presenting her poster “Intermetallic-Superalloy Radiative Heat Transfer in Additive Manufacturing”

About 15 students presented their research in a poster presentation. Awards were presented to graduate students Erin Curry and Martin Disla, and an undergraduate student Sadhana Suresh.

Martin Disla and Prof. Whitaker
Sadhana Suresh and Prof. Niloy Dutta

Department, alumni celebrate career of Prof. Doug Hamilton

Friday afternoon on April 20, 2018 the UConn Physics Department held a colloquium in honor of Professor Douglas Hamilton on the occasion of his retirement from active service on the faculty. The colloquium was MC’ed by Prof. Jason Hancock, who surveyed the highlights of a career spanning four decades marked by notable accomplishments in research, teaching, and service. Several of Doug’s former students also presented tributes to their mentor, some in person, and some by video or written message, expressing their gratitude for what they learned from him, both by instruction and example. At the end of the hour, Doug presented some final comments, which were followed by a standing ovation in recognition of Doug’s many contributions to our field, our department, and the University. Doug, you will be missed!

-Richard Jones