Announcements

Notices prepared for posting on the UConn Physics Department web page under the announcements section.

Prof. Cara Battersby Awarded an NSF CAREER grant

Cara Battersby CAREER AwardProfessor Cara Battersby has been awarded an NSF CAREER grant! “The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity that offers the National Science Foundation’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.

Prof. Battersby’s CAREER Award is entitled “CAREER: Shining STARs Amidst the Turbulence” and is an ambitious project to complete the first-ever systematic study of turbulence in an extreme environment, the center of our galaxy. Turbulence is poorly understood yet plays a pivotal role in the setting the Initial Mass Function (IMF), which underpins all of modern astrophysics. The results from this research will be brought into under-resourced high school classrooms through lesson plans jointly developed by K-12 teachers and undergraduate students from traditionally under-represented groups. Battersby aims to recruit and retain students from under-represented groups in STEM through a new mentorship program UConn-STARs.

Prof. Battersby’s research featured in UConn Today article

Professor Cara Battersby (center)
Professor of Physics Cara Battersby (center) talks to attendees at a solar eclipse viewing in 2017.

Professor Cara Bettersby’s research is featured in the article “The Study of Big Data: How CLAS Researchers Use Data Science” published by UConn Today.

Prof. Battersby’s work focuses on describing and studying the center of the Milky Way galaxy, which she calls an “experimental playground” for the distant cosmos. Her work described the spectroscopy of the galaxy’s center, which analyzes imagery to understand the chemical makeup of the area, as well as its temperature and the velocity of objects.

Battersby works on data from the Submillimeter Array facility, a collection of eight powerful telescopes situated atop Mount Maunakea in Hawaii. The telescope can collect up to a terabyte of data every day, and Battersby’s project used 61 days of data.

Battersby refers to her computer as “her laboratory,” and ensures the students in her classes do, too. In her courses, she often assigns programming and analysis problems, like using a large data set to determine the material composition of the Sun.

“We have a lot of the tools to train students in data science,” she says. “Research is moving in that direction, and students in our programs are prepared for it.”

 

Professor Munirul Islam: Celebrating His Life and His Legacy

Dear Colleagues:

I would like to share some thoughts on Munir Islam who recently passed away. Prof. Islam came to UConn in 1967 from a faculty position at Brown University. In the late 1970s there were two particle theorists at UConn, Profs. Kurt Haller and Munir Islam. They set about building an elementary-particle theory program here and garnered the support of then Physics Head Joe Budnick and CLAS Dean Julius Elias. They soon obtained funding for a new Department of Energy initiative to support particle theory in the Department. In 1979 they
were able to bring me in as an Associate Professor and Mark Swanson as an Assistant Professor. So eager were Kurt and Munir to bring us in, they chose to forego the summer salary that they had been awarded on the DOE grant.  The impact of the DOE grant on the UConn administration was quite far reaching and led to further internal support. Within a few years I had been tenured and promoted to Full and Mark had been tenured and appointed to Associate at our Stamford branch, where he later became an administrator.

After that, Kurt and Munir were able to secure a bridge position with the DOE that would provide five years of support, provided the UConn administration would create a tenure track position for the recipient. This they agreed to do, and so we brought in Daniel Caldi at the Assistant level, who subsequently was appointed Associate with tenure. Dan eventually opted to leave us for SUNY Buffalo, but our particle group was then able to convince the UConn administration to let us keep the position, and we then hired Gerald Dunne. Gerald went up the ladder very quickly to tenured Full professor. The success of our program enabled us subsequently to bring in Alex
Kovner, followed by Tom Blum (both now tenured Full) and current Assistant Luchang Jin. The success and endurance of the particle group for more than forty years now is a testament to the foresight and the unwavering and unabating commitment of Kurt and Munir to it, and it serves as permanent memorial to both of them.

Munir Islam always retained an enthusiasm for research, an enthusiasm which did not diminish at all after he retired. He focused on fundamental problems in particle physics, with particular emphasis on the theory of the structure of the proton as revealed by high-energy proton-proton scattering. This is perhaps best evidenced in what essentially became a lifelong collaboration with his former graduate student Richard Luddy (at the right, with Prof Islam at the left in the above photograph) as the two of them grappled with Munir’s deep ideas on proton scattering during many of Munir’s later years as a Professor and then as an Emeritus. Munir had a gift for simple pictorial explanations of his research, which he was able to explain lucidly in a lecture for visiting high-school teachers and students during an open house. Munir was urbane, worldly, and wise, and it was a great joy to have him not just as a colleague but also as a friend. He will be sorely missed by all of those that knew him and especially by me as my career owes so much to him. In appreciation, Philip Mannheim.In appreciation,

Philip Mannheim.

2020-Newsletter Department Head Greeting

It’s been crazy.

That holds for everybody over these past six months; UConn and the Physics Department as well. Events unfurled rapidly last March. Within a week the March Meeting of the APS was cancelled, our department had to postpone the 2020 Katzenstein Lecture with Donna Strickland, and then the University announced that students would not return to campus after spring break, with classes moving online and research labs shut down. The work of the department is now ramping back up, though many courses will remain online through spring semester 2021.

The Physics Department has seen turnover in personnel. Three long time faculty members have left the department this summer: Phil Gould has retired, Robin Cote has moved on to be the Dean of Science at UMass Boston, and Susanne Yelin has taken a position at Harvard. All three will maintain ties with us for the foreseeable future. We have some new faces as well. Professors Daniel Angles-Alcazar and Chiara Mingarelli were hired in fall 2019 on bridge positions with the Center for Computational Astrophysics of the Simons Foundation. They both spent 2019-20 at CCA, coming to Storrs full time this fall. We have hired Professor Chris Faesi to complete our initial construction of an Astrophysics group, though he will delay his start at Storrs until fall 2021. We also have hired Professor Erin Scanlon to a position at the Avery Point campus, though during 2020-21 she will spend some time at teaching at Storrs. Another addition to our department is University President Thomas Katsouleas. He is a plasma physicist with academic appointments in Electrical Engineering and Physics. Apparently, his other duties keep him busy, but he has managed to attend a few department events and a faculty meeting.

Despite the pandemic, the department has had notable events and successes. I highlight a few here. We moved into our newly renovated building in August 2019. While there have been a host of construction hiccups, the building is now mostly completed. Our new research labs are state of the art, we have new teaching spaces that allow for moving to a new method of teaching introductory physics, and bright airy spaces throughout. In November we hosted Dame Jocelyn Bell Burnell for the 2019 Katzenstein Lecture. The event was a rousing success as we packed the student union theater and had record attendance at the banquet. We have had some great research success. The most prestigious awards given to new faculty members are the CAREER awards from federal agencies. We now have an unprecedented four active CAREER awardees: Professors Andrew Puckett, Daniel McCarron, Jonathan Trump, and most recently Luchang Jin. Congratulations to all four.

Looking forward, the immediate future remains daunting. We anticipate significant pandemic restrictions for another year and budgets for the university and research agencies are unsettled. Yet the department remain strong. We continue innovative work in education and research, we have an increasing number of excellent physics students, and dedicated faculty with a particularly strong young cohort. When the situation allows, please come visit us to see how we are evolving.

New result for part of muon anomaly

 

Professors Tom Blum and Luchang Jin, along with colleagues at BNL and Columbia, Nagoya, and Regensburg universities have completed a first-ever calculation of the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment with all errors controlled. The work is published in Physical Review Letters as an Editor’s Suggestion and also appeared in Physics Magazine. A recent press release from Argonne National Lab described the calculation, which was performed on Mira, Argonne’s peta-scale supercomputer.

The team found the contribution is not sufficient to explain the longstanding difference between the Standard Model value of the anomalous magnetic moment and the BNL experiment that measured it. The discrepancy, which could indicate new physics, should be resolved soon by a new experiment at Fermilab (E989) and improved theory calculations, including the one described here, both with significantly reduced errors. E989 is set to release their first results later this year.

Ron Mallett Featured on NBC Connecticut

Could traveling into the past be part of our future? Quite possibly, says Ron Mallett, a UConn emeritus professor of physics who has studied the concept of time travel for decades. Earlier this month, he spoke with NBC Connecticut reporter Kevin Nathan about his life and work as a theoretical physicist, and discussed how time travel may be possible someday.

View the video on nbc.com

Goodwin School 3rd grade visits the Physics Learning Labs

About one mile from the Gant plaza, Goodwin Elementary School teaches some really bright kids. On January 15, 2019, science teacher Nancy Titchen and Goodwin teachers brought the entire 3rd grade class on a field trip to the Physics Learning Labs mock-up studio for some science fun. Students enjoyed a liquid nitrogen show, witnessed quantum effects in superconducting magnetic levitation, experienced mechanics concepts such as angular momentum, and learned about vibrations and the phenomenon mechanical of resonance. The expert hands of a star team of PhD students (Erin Curry and Donal Sheets) and new laboratory technicians (James Jaconetta and Zac Transport) ensured students had a great time and learned some interesting science. Big thanks to the staff and the Goodwin School!

Workshop ‘Dynamic Quantum Matter’ organized by UConn faculty

Dynamic Quantum Matter, Entangled orders and Quantum Criticality Workshop
Dates: June 18- June 19, 2018

Sponsors

UConn, NSF, Nordita, Villum Center for Dirac Materials, Institute for Materials Science – Los Alamos, Wiley Publishers
           

Scope

The conference will focus on entangled and non-equilibrium orders in quantum materials. The 21st century marked the revolution of probing matter at the nano- to mesoscale and these developments continue to be the focus of active research. We now witness equally powerful developments occurring in our understanding, ability to probe, and manipulate quantum matter, in entangled orders and novel states, in the time domain. Recent progress in experimental techniques including x-ray optics, optical pumping, time resolved spectroscopies (ARPES optics), and in cold-atom systems has led to a resurgence of interest in the non-equilibrium aspect of quantum dynamics. The novel entangled orders that have nonzero “overlap” with more than one order parameter also have emerged as an exciting new direction for research in quantum matter. Entangled orders go beyond the conventional orders such as density and spin, and significantly expand the possible condensates we can observe. It is only because of the lack of experimental control, resolution, theoretical framework, and computational power, that the realm of entangled and quantum non-equilibrium remained largely unexplored until now. The time has come for us to turn full attention to these phenomena. Specific topics include: superconductivity and dynamics near quantum criticality, composite orders in correlated materials, effects of strain on quantum critical points, and superconductivity in STO. This conference will have a format of topical lectures, while leaving ample time for discussions.

Venue

Gurney’s Resorts | Newport, RI