Article highlighting noteworthy activity within the department.

Daniel McCarron wins NSF Early Career Award

Daniel McCarron, assistant professor of physics, the College of Liberal Arts and Sciences, will receive $645,000 over five years for his work on the development of techniques to trap large groups of molecules and cool them to temperatures near absolute zero. The possible control of molecules at this low temperature provides access to new research applications, such as quantum computers that can leverage the laws of quantum mechanics to outperform classical computers.

The NSF Faculty Early Career Development (CAREER) Program supports early-career faculty who have the potential to serve as academic role models in research and education, and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty build a firm foundation for a lifetime of leadership in integrating education and research.

McCarron was one of 8 junior faculty at the University of Connecticut to receive the prestigious Early Career awards from NSF in 2019. For a description of all 8 awards, see this recent article published in UConn Today.

Faculty Profile: UConn Astrophysicist Cara Battersby

Meet the Researcher: UConn Astrophysicist Cara Battersby

UConn astrophysicist, Cara Battersby. (Carson Stifel/UConn Photo)

A young Cara Battersby once scrawled out the phrase “Science is curious” in a school project about what she wanted to do when she grew up.

This simple phrase still captures Battersby’s outlook on her research about our universe.

Recently shortlisted for the 2018 Nature Research Inspiring Science Award, Battersby has been working on several projects aimed at unfolding some of the most compelling mysteries of galaxies near and far.

“I’m really interested in how stars are born,” Battersby says. “They’re the source of all life on Earth.”

Many of the “laws” we know about how stars are formed are based exclusively on observations of our own galaxy. Because we don’t have as much information about how stars form in other galaxies with different conditions, these laws likely don’t apply as well as we think they should.

Battersby is leading an international team of over 20 scientists to map the center of the Milky Way Galaxy using the Submillimeter Array in Hawaii, in a large survey called CMZoom. She was recently awarded a National Science Foundation grant to follow-up on this survey and create a 3D computer modeled map of the center of the Milky Way Galaxy.

The center of our galaxy has extreme conditions similar to those in other far-off galaxies that are less easily studied, so the Milky Way is an important laboratory for understanding the physics of star formation in extreme conditions.

By mapping out this region in our own galactic backyard, Battersby will be able to form a better idea of how stars form in more remote areas of the universe.

“I love that astrophysics is one of the fields where I can get my hands into everything,” Battersby says. “Stars are something real that you can actually see and study the physics of.”

Battersby is also investigating the “bones” of the Milky Way. Working with researchers from Harvard University, she is looking at how some unusually long clouds could be clues to constructing a more accurate picture of our galaxy.

“Because of the size of our galaxy, it’s infeasible to send a satellite up there to take a picture,” she says.

Since we are living within the Milky Way it is much harder for us to get a clear idea of what it looks like. We know that the Milky Way is a spiral galaxy, but we don’t yet know how many “arms” the spiral has and if it’s even a well-defined spiral.

These kinds of celestial mysteries have long fascinated Battersby.

Battersby says she would “devour” astronomy books and magazines her parents gave her, but it wasn’t until college that her passion truly developed.

She did her Ph.D. thesis at the University of Colorado on high-mass stars being formed on the disk of our galaxy. During this research she made an astounding discovery that every high-density cloud in space is already in some phase of forming a star, a process that takes millions of years.

This led her to conclude that star formation starts as the cloud is collapsing bit by bit, modifying previous ideas of the timeline of this process.

“If you look at something new in a way no one’s looked at it before, the universe has a great way of surprising us,” Battersby says.

View full story on UConn Today.


By: Anna Zarra Aldrich ’20 (CLAS), Office of the Vice President for Research



Welcoming Barrett Wells as new department head


In August 2018, Professor Barrett Wells entered as the new head of the Physics department, following Professor Nora Berrah.  Barrett is an experimental condensed matter physicists with a robust research program involved in both synthesis and advanced experimentation around novel phases of quantum materials. Barrett brings to the department strong administrative talent, having served a long term as the associate department head for undergraduate affairs as well as chairing many important committees since his arrival at UConn.

Learn more about Professor Wells and the physics department from a recent interview produced by the College of Liberal Arts and Sciences.

Department, alumni celebrate career of Prof. Doug Hamilton

Friday afternoon on April 20, 2018 the UConn Physics Department held a colloquium in honor of Professor Douglas Hamilton on the occasion of his retirement from active service on the faculty. The colloquium was MC’ed by Prof. Jason Hancock, who surveyed the highlights of a career spanning four decades marked by notable accomplishments in research, teaching, and service. Several of Doug’s former students also presented tributes to their mentor, some in person, and some by video or written message, expressing their gratitude for what they learned from him, both by instruction and example. At the end of the hour, Doug presented some final comments, which were followed by a standing ovation in recognition of Doug’s many contributions to our field, our department, and the University. Doug, you will be missed!

-Richard Jones

In memoriam, George H. Rawitscher (1928-2018)

It is with great sorrow that we report the passing of our long-time colleague and friend, George Rawitscher on March 10, 2018, after a brief illness and just having passed his 90th birthday, which was celebrated with a cake at a meeting of the UConn Physics Department. George was born in 1928 in Germany, where his fa-ther was a distinguished Professor of Botany at The University of Freiburg. In 1934 his father, Felix Rawitscher who was Jewish, brought his family which in-cluded George’s mother, Charlotte Oberlander, his sister Erika, and George from Germany to Brazil to escape the Nazis. In Brazil, Felix established and chaired the Botany Department, which still bears his name, at the University of Sao Paulo.

George grew up in Sao Paulo, where he learned fluent Portuguese. From an early age he knew he wanted to be a physicist, and taught himself quantum mechanics from a book during high school. He graduated in physics and mathematics from the University of Sao Paulo in 1949, and he served as an Instructor at the Brazilian Center for Physical Research in Rio de Janiero for two years, receiving a Brazilian National Research Council Fellowship. While he was in the Center for Physical Research at Rio, he worked under Richard Feynman who was a visiting professor at the same institute. He told his grandson Nicholas that Feynman had made a big mark on his life, inspiring his approach to physics, and observing that he had the potential to become a “real” physicist, which he remained until the end of his life.

Following his time in Rio, George went to Stanford University as a graduate student in theoretical nuclear physics and mathematics. He received his Ph.D. in 1956, for a study of Fierz-Pauli spin 3/2 particles and the anomalous magnetic moment of the muon under Profs. Leonard Schiff and D.R. Yennie. His first paper had to do with the effect of the finite size of the nucleus on muon pair production by gamma rays.

While at Stanford, George met and later married Mary Adams, a fellow Stanford student, and they proudly raised two sons, Peter and Henry. Mary, a biochemist, died in 1980. In his later years, George was again happily married to Joyce Rawitscher in 2009, who passed away in 2016. Following his graduate work, George became an Instructor at the Physics Nuclear Structure Center (University of Rochester) for two years and then joined the Physics Department at Yale as Instructor, doing research in collaboration with Prof. Gregory Breit. He remained at Yale as Assistant Prof. of Physics until 1964. He joined the Physics Department at the University of Connecticut in Storrs as an Associate Professor and then became Professor of Physics from 1972. He retired in 2009 but remained at UConn as an emeritus Research Professor until days before his death, continuing to do active research in nuclear physics, computational physics and ultracold atomic collision physics until his final days.

Prof. Rawitscher received several prestigious academic honors including one of the early Research Fellowship awards from the Alexander von Humboldt Foundation (Germany) in 1964 and became a Fellow of the American Physical Society, nomi-nated by the Division of Nuclear Physics in 2016. During his tenure at the University of Connecticut, he took academic leaves at the Max Planck Institut fur Kernphysik in Heidelberg (1964-1966), the Laboratory for Nuclear Science at MIT (1972), as guest professor at the University of Surrey, England 1973, the University of Maryland (1987-1988) and served on the Board of Directors of Bates Users Theory Group at MIT (1982-1985) and the Executive Committee of the American Physical Society topical group on Few Body Systems and Multi-Particle Dynamics (1993-1995). He gave a number of invited presentations in nuclear theory at conferences, published approximately 88 refereed papers and numerous conference proceedings. His principal research interests involved scattering problems using non-local opti-cal models of nuclear processes, coupled-channel reaction mechanisms for nuclear break-up such as the (e,e’p) reaction, and virtual nuclear excitations. Recently he emphasized development of numerical methods such as Galerkin and spectral expansions for solving integral equations. He has applied some of these techniques to studies of ultracold atomic collisions as well as nuclear reactions. His most recent refereed papers (2015-2017) concerned “Revival of the Phase-Amplitude description of a Quantum-Mechanical wave function.”

Professor Rawitscher was an engaged and untiring participant both in his Department and in the general community up to the last moments of his life. He promoted public awareness and activism on ameliorating the effects of global climate change and he and his wife Joyce have been active in the peace movement. He was a member of the Storrs, CT Quaker Meeting. He was also active in community service in the Storrs area, for example serving on the Town of Mansfield Sustainability Committee. Recently he has been working on a nearly-finished book summarizing his lifelong expertise in numerical computational physics, under contract with Springer, with two younger colleagues from Brazil. George was a dedicated and effective undergraduate teacher and empathetic mentor to a large number of graduate students, colleagues and collaborators. George was a central member of the department for more than 50 years, and has earned a special place in our hearts forever. His inspiring presence and example will be very much missed at the University, amongst his family, friends and the community, and it was a great loss to see him go.

Department welcomes new students with annual Ice Cream Social

The UConn Physics Graduate Student Association sponsored a social event featuring UConn dairy bar ice cream to welcome back students after the summer break. Other regular events throughout the year sponsored by the PGSA include the Holiday Party in December, the Poster Exhibition Competition in April, and the  Department Picnic in May.



Annual group hike up Mount Monadnock shows charms of New England fall

Each fall for the past decade or more, members of the UConn Physics Department have gathered one clear day near the peak of fall colors for a group hike up Mount Monadnock. Located in the White Mountains of New Hampshire not far from Keene, Monadnock is well known for its accessibility to a wide range of climbers, and for its scenic views from the top. These factors help to explain why it is the most climbed mountain peak in the eastern USA, and one of the most climbed in the world. After the hike, the group gathers in a park near the base of the mountain to enjoy barbeque and some well-deserved rest.


Monadnock hike 2016
Mount Monadnock group hike 2016


Professor William Stwalley Retires

William C. Stwalley (Bill), Board of Trustees Distinguished Professor of Physics, has retired from teaching on June 1, 2016. He is now continuing as UConn Board of Trustees Distinguished Professor Emeritus /Research Professor of Physics and also continuing as an Affiliate Professor of Chemistry and of the Institute of Material Science (IMS).

The Physics Department would like to give a heartfelt ‘Thank You!’ and ‘Congratulations!’ to Cynthia, Michael and Bill.
Enjoy your much deserved retirement!