Web cookies (also called HTTP cookies, browser cookies, or simply cookies) are small pieces of data that websites store on your device (computer, phone, etc.) through your web browser. They are used to remember information about you and your interactions with the site.
Purpose of Cookies:
Session Management:
Keeping you logged in
Remembering items in a shopping cart
Saving language or theme preferences
Personalization:
Tailoring content or ads based on your previous activity
Tracking & Analytics:
Monitoring browsing behavior for analytics or marketing purposes
Types of Cookies:
Session Cookies:
Temporary; deleted when you close your browser
Used for things like keeping you logged in during a single session
Persistent Cookies:
Stored on your device until they expire or are manually deleted
Used for remembering login credentials, settings, etc.
First-Party Cookies:
Set by the website you're visiting directly
Third-Party Cookies:
Set by other domains (usually advertisers) embedded in the website
Commonly used for tracking across multiple sites
Authentication cookies are a special type of web cookie used to identify and verify a user after they log in to a website or web application.
What They Do:
Once you log in to a site, the server creates an authentication cookie and sends it to your browser. This cookie:
Proves to the website that you're logged in
Prevents you from having to log in again on every page you visit
Can persist across sessions if you select "Remember me"
What's Inside an Authentication Cookie?
Typically, it contains:
A unique session ID (not your actual password)
Optional metadata (e.g., expiration time, security flags)
Analytics cookies are cookies used to collect data about how visitors interact with a website. Their primary purpose is to help website owners understand and improve user experience by analyzing things like:
How users navigate the site
Which pages are most/least visited
How long users stay on each page
What device, browser, or location the user is from
What They Track:
Some examples of data analytics cookies may collect:
Page views and time spent on pages
Click paths (how users move from page to page)
Bounce rate (users who leave without interacting)
User demographics (location, language, device)
Referring websites (how users arrived at the site)
Here’s how you can disable cookies in common browsers:
1. Google Chrome
Open Chrome and click the three vertical dots in the top-right corner.
Go to Settings > Privacy and security > Cookies and other site data.
Choose your preferred option:
Block all cookies (not recommended, can break most websites).
Block third-party cookies (can block ads and tracking cookies).
2. Mozilla Firefox
Open Firefox and click the three horizontal lines in the top-right corner.
Go to Settings > Privacy & Security.
Under the Enhanced Tracking Protection section, choose Strict to block most cookies or Custom to manually choose which cookies to block.
3. Safari
Open Safari and click Safari in the top-left corner of the screen.
Go to Preferences > Privacy.
Check Block all cookies to stop all cookies, or select options to block third-party cookies.
4. Microsoft Edge
Open Edge and click the three horizontal dots in the top-right corner.
Go to Settings > Privacy, search, and services > Cookies and site permissions.
Select your cookie settings from there, including blocking all cookies or blocking third-party cookies.
5. On Mobile (iOS/Android)
For Safari on iOS: Go to Settings > Safari > Privacy & Security > Block All Cookies.
For Chrome on Android: Open the app, tap the three dots, go to Settings > Privacy and security > Cookies.
Be Aware:
Disabling cookies can make your online experience more difficult. Some websites may not load properly, or you may be logged out frequently. Also, certain features may not work as expected.
Professor Menka Jain’s two PhD students, Jacob Pfund and Zachary Ritchey, assisted with planning and organizing the fourth annual UConn Queer Science Conference on June 8th 2025. With activities such as brain dissections, fly genetics demos, and pathobiology lab tours, the participating high school students learn about a cross-section of different scientific disciplines throughout the day. The event aims to make queer representation in science more visible for LGBTQIA+ high school students and show participants that they can pursue scientific careers too. For more information on this event, you can view the associated UConn Today article “At UConn’s Queer Science Conference, New Futures Take Shape for Young Scientists.”
Or, if you’re interested in getting involved next year, contact the Vergnano Institute for Inclusion and stay tuned for updates on their webpage!
The UConn STARs group visited Hartford Public High School (HPHS) to teach physics for a total of eight class periods from May 6th-9th, 2024. UConn brought 16 undergraduate students from the STARs program to HPHS for our annual outreach program, during which we interacted with about 100 high school students. We collaborated with physics teacher Dr. Thomas Longyear to develop four lesson plans on topics of: 1) Phases of Matter, 2) Waves, 3) Electrostatics, and 4) Gravity over the course of the academic year. During our visit to HPHS, the STARs participants led these engaging lesson plans with hands-on demos and activities, over the course of four days. The goal of the STARs program is to improve the retention of students from Historically Excluded Groups (HEGs) in physics at UConn by addressing key factors responsible for their attrition. We have academic year events that focus on social engagement, professional development, and community building. The STARs program just concluded its 3rd year, with consistent progress and growth, and is looking forward to continued growth in our fourth year!
Pictured below are the STARs participants and the HPHS students during our May 2024 visit.
On April 11th and 12 of 2019 Prof. Paul Corkum of the Joint Attosecond Laboratory (University of Ottawa and the National Research Council of Canada) visited the department. Prof. Corkum’s main area of research is on the interaction of ultrashort laser pulses with matter broadly defined. His most notable contribution is perhaps the discovery of the so-called three-step model, which has become the basis of the emerging field of attosecond science. Attoseconds, equal to 1 billionth of 1 billionth of a second (10-18 s) is the shortest time scale ever measured or controlled by humans and is at the forefront of modern optics.
Prof. Corkum is a member of the US National Academy of Sciences, the Russian Academy of Sciences, the Austrian Academy of Sciences, the Royal Canadian Academy of Sciences and the Royal Society of London. He has received many accolades throughout his career, including the Thomson Reuters Citation Laureate which is awarded to researchers who are “of Nobel class” and likely to earn the Nobel someday and the Order of Canada.
On April 12, Prof. Corkum presented the annual Edward Pollack Distinguished Lecture, entitled “Attosecond Pulses Generated in Gases and Solids”. This lecture is supported by an endowment established by the family of the late Professor Edward Pollack in 2005. Ed’s family, friends and colleagues made contributions in his memory. This special colloquium provides a presentation in Ed’s honor in the field of atomic, molecular and optical physics, his area of research expertise. This year Mrs. Rita Pollack and their three children: Cindy [U.S. Government civil servant], Lois [now a professor of applied physics at Cornell], and Howard [professor of modern languages (German) at dePauw University in Indiana] were all in attendance.
Below, dinner with the Pollack family members, UConn faculty, and guests.
Clockwise from left: Victoria Starzef, George Gibson, Win Smith, Anne Smith, Margaret Kessel, Quentin Kessel, Nadia Corkum, Paul Corkum, Robin Côté, Lois Pollack, Cindy Blazar, Rita Pollack, Howard Pollack-Milgate, Sophie Pollack-Milgate, and Sarah Trallero