The U.S. Centers for Disease Control lists radon as a primary cause of lung cancer, second only to smoking. The Environmental Protection Agency estimates that 20,000 deaths each year from lung cancer in the U.S. are the result of exposure to radon in the living environment. It is believed that as many as 1 in 15 homes in the continental United States have radon levels that require some form of mitigation. In spite of this, very few homes are equipped with continuous radon monitoring devices and most radiation monitoring facilities only provide feedback on time scales of weeks or even months.
The technology used in standard residential radon monitoring has not changed significantly over the past 50 years. On the other hand, development of fast detectors for particle physics experiments at large international laboratories such as the Large Hadron Collider over the past two decades has opened up new technologies for radiation detection that may result in a significant improvement in the efficiency and response time for radon detection.
UConn undergraduate Mira Varma, pictured above, is holding a part of what she hopes to assemble into a hand-held radon detector capable of detecting changes in radon concentration on the time scale of an hour, close to the time scale of the natural variation in a residential environment, rather than days or weeks. Mira is carrying out this development under the direction of UConn Physics Prof. Richard Jones.