On August 27, 2024, scholars, trustees, and friends of UConn gathered at the University of Connecticut School of Law to honor members of the university community elected to the National Academies of Sciences, Engineering, and Medicine. Established by an Act of Congress in 1863, the National Academy of Sciences was followed by the National Academy […]
Every year, the American Physical Society (APS) sponsors CU*IP – Conference for Undergraduate Women and Gender Minorities in Physics – at several locations around the country. This year, led by Prof. Nora Berrah, UConn Physics applied to host this national conference in Storrs and our proposal was accepted for January 24-26, 2025! The purpose of […]
The University of Connecticut, Department of Physics is proud to announce the 26th Annual Katzenstein Distinguished Lecturer that will be on Friday, November 15th.
UConn faculty and students will host a community event to view the solar eclipse at 2:00-4:30pm this Monday, April 8, on Horsebarn Hill (behind the Dairy Bar). Here in Storrs we’ll observe a maximum occultation of 92% at 3:28pm. This is a very exciting and special opportunity, since the next time that our location will […]
Adam Riess- Bloomberg Distinguished Professor and 2011 co-winner of the Nobel Prize in Physics, Johns Hopkins University
In 1929 Edwin Hubble discovered that our Universe is expanding. Eighty years later, the Space Telescope that bears his name is being used to study an even more surprising phenomenon: that the expansion is speeding up. The origin of this effect is not known, but is broadly attributed to a type of “dark energy” first posited to exist by Albert Einstein and now dominating the mass-energy budget of the Universe. Professor Riess will describe how his team discovered the acceleration of the Universe and why understanding the nature of dark energy presents one of the greatest remaining challenges in astrophysics and cosmology. He will also discuss recent evidence that the Universe continues to defy our best efforts to predict its behavior.
Adam Riess is a Bloomberg Distinguished Professor, the Thomas J. Barber Professor in Space Studies at the Krieger School of Arts and Sciences, a distinguished astronomer at the Space Telescope Science Institute and a member of the National Academy of Sciences.
He received his bachelor’s degree in physics from the Massachusetts Institute of Technology in 1992 and his PhD from Harvard University in 1996. His research involves measurements of the cosmological framework with supernovae (exploding stars) and Cepheids (pulsating stars). Currently, he leads the SHOES Team in efforts to improve the measurement of the Hubble Constant and the Higher-z Team to find and measure the most distant type Ia supernovae known to probe the origin of cosmic acceleration.
In 2011, he was named a co-winner of the Nobel Prize in Physics and was awarded the Albert Einstein Medal for his leadership in the High-z Supernova Search Team’s discovery that the expansion rate of the universe is accelerating, a phenomenon widely attributed to a mysterious, unexplained “dark energy” filling the universe. The discovery was named by Science magazine in 1998 as “the Breakthrough Discovery of the Year.”
His accomplishments have been recognized with a number of other awards, including a MacArthur Fellowship in 2008, the Gruber Foundation Cosmology Prize in 2007 (shared), and the Shaw Prize in Astronomy in 2006.
Reception at 3:00pm in the Gant Science Light Court
Last year’s Nobel Prize in Physics was awarded to Pierre Agostini, Anne l’Huillier, and Ferenc Krausz, for discoveries that launched attosecond science and technology at the turn of the century, before there were any x-ray free electron lasers. Subsequent advances at SLAC as well as other labs around the world helped to establish the breadth and importance of research at the attosecond frontier, making the case for Nobel recognition of the foundational work. This illustrates how technological advances and fundamental discoveries feed on each other: advances in ultrafast lasers are quickly followed by fundamental discoveries in physics, which then motivate further advances in laser technology. This colloquium is an eyewitness account of that story from its beginnings four decades ago to the present. I’ll describe the science behind the Prize, and I’ll explain how x-ray lasers have become a central focus for the next chapter of the saga.
Reception preceding at 3pm in the Gant Light Court