For more information about PhD Thesis Defense presentations, please contact the individual student or advisor.
-
PhD Dissertation Defense10:00am
5/3
PhD Dissertation Defense
Friday, May 3rd, 2024
10:00 AM - 12:00 PM
Gant South Building GS-119
Graduate student Debadarshini Mishra, Department of Physics, University of Connecticut
Photo-Induced Ultrafast Dynamics in Molecules
Imaging electronic and molecular dynamics at ultrafast timescales is crucial for understanding the mechanisms of chemical reactions, which are of fundamental importance in fields ranging from materials science to biochemistry. Furthermore, gaining insights into these processes at the atomic and molecular levels can enable precise control over reaction dynamics, leading to significant technological advancements through the development of efficient catalysts, innovative materials, and targeted drugs. In this dissertation talk, I will present my work on imaging time-resolved dynamics in molecular systems, using various light sources and ultrafast spectroscopy techniques. First, I will discuss a method for the direct visualization of neutral fragments in roaming reactions, which involve an unconventional dissociation process, using coincident Coulomb explosion imaging. Next, I will explore ultrafast electron diffraction as a different yet complementary imaging technique to identify the competing non-radiative relaxation pathways for a UV-excited molecule. Finally, I will briefly discuss our recent work on relaxation and fragmentation dynamics in large molecules, particularly C60, and isomerization and excited-state dynamics in small molecules.
-
PhD Dissertation Defense10:00am
4/26
PhD Dissertation Defense
Friday, April 26th, 2024
10:00 AM - 12:00 PM
Gant South Building GS-119
Graduate student Mitchell Bredice, Department of Physics, University of Connecticut
Kinetics, Nucleation, and Relaxation Dynamics of Ion-Seeded Nanoparticles
The recent interest in studying the adsorption and emission spectra of the hazy atmospheres of exoplanets stimulates the interest in clusters, small aggregates of atoms or molecules. The nucleation and dynamics of nanoparticles in the Earth’s atmosphere and their impact on the global climate and environment is another important area of research stimulating investigations of nucleation processes. However, how these small aggregates form is not wholly understood. Traditionally, nucleation of clusters or other phases is described through Classical Nucleation Theory. Although this theory has many discrepancies in describing the nucleation of submicron particles. In this work, we have performed molecular dynamics simulations of the nucleation of ion-seeded nanoparticles, specifically ArnH+ clusters, to investigate the microscopic mechanisms of nucleation from a gas or liquid phase. From these simulations, we have studied the stages of the nonequilibrium and equilibrium growth of ArnH+ clusters and analyzed the size distribution and internal energy relaxation of nascent clusters during different stages of their growth. The fundamental impact of the internal energy relaxation on the nonequilibrium nucleation of small ArnH+ clusters has been demonstrated. This analysis has generally been avoided in previous investigations due to assumptions of the equilibrium nature of the nucleation process. The results of our simulations showed that nanoparticles are formed in highly excited states, thus the cluster growth and relaxation are concurrent processes, and that relaxation of the cluster internal energy can delay cluster growth processes. To further investigate the internal energy relaxation, an ensemble of molecular dynamics simulations was performed for the detailed analysis of the average time evolution of kinetic, potential, and total energies of small ArnH+ clusters, and their kinetic energy relaxation. The results of the performed simulations have been explained through the use of a collisional Boltzmann equation describing the energy relaxation processes. Lastly, the general relationship between nonequilibrium growth and internal energy relaxation is discussed.