Sunday  Monday  Tuesday  Wednesday  Thursday  Friday  Saturday 

31  1  2  3  4  5  6 


 
7  8  9  10  11  12  13 


 
14  15  16  17  18  19  20 

 
21  22  23  24  25  26  27 
28  29  30  1  2  3  4 

4/1 Particle, Astrophysics, and Nuclear Physics Seminar
Particle, Astrophysics, and Nuclear Physics Seminar
Monday, April 1st, 2024
2:00 PM  3:00 PM
Gant South BuildingDr. Fatma Aslan, Jefferson National Laboratory and UConn
Hadron structureoriented approach to TMD phenomenology
We present a first practical implementation of a recently proposed hadron structure oriented (HSO) approach to TMD phenomenology applied to DrellYan like processes. We compare and contrast general features of our methodology with other common practices and emphasize the improvements derived from our approach that we view as essential for applications where extracting details of nonperturbative transverse hadron structure is a major goal. These include the HSO’s preservation of a basic TMD partonmodellike framework even while accounting for full TMD factorization and evolution, explicit preservation of the integral relationship between TMD and collinear PDFs, and the ability to meaningfully compare different theoretical models of nonperturbative TMD parton distributions.
Contact Information:Prof. P. Schweitzer
More

4/1 Atomic, Molecular, and Optical Physics Seminar
Atomic, Molecular, and Optical Physics Seminar
Monday, April 1st, 2024
3:30 PM  4:30 PM
GS119Graduate student Geoff Harrison, Department of Physics, University of Connecticut
ITAS: A Technique for Complete Quantum Measurements on a New Timescale
Transient absorption spectroscopy is a wellestablished technique used to study electron dynamics in atomic and molecular systems but typically can only measure the magnitude of the electronic wavefunction. We have integrated interferometric methods into this technique to allow complete quantum measurements of both the magnitude and phase of electronic wavefunctions. A spatial light modulator (SLM) is used to separate the interferometric arms in an extremely stable way, enabling the measurement of effects on the zeptosecond timescale (with a jitter of 3zs). In this talk, I’ll describe how we’ve utilized SLMs to make these measurements possible and share some initial data we’ve taken looking at phase effects in argon.
Contact Information:Prof. A.T. Le
More

4/4 Condensed Matter Physics Seminar
Condensed Matter Physics Seminar
Thursday, April 4th, 2024
2:00 PM  3:30 PM
Gant South BuildingDr. Paul M. Eugenio, University of Connecticut
Tunable moire sublattices in twisted square homobilayers: exploiting fundamental principles for new technologies
Stacking and twisting atomically thin bilayers at small angles produces an approximate periodic pattern, due to the overlap of the crystal layers. These devices, dubbed “moire” bilayers, exhibit a high degree of tunability and variability: through choice of twist angle, constituent layers, and gating. To date, a number of such devices have been built which have demonstrated a plethora of novel phases, including nontrivial topology and Mott physics. Despite this explosion in moire research, moire bilayers have been almost exclusively formed from layers with triangular/hexagonal crystal geometry, and where the valence bands are centered on the Gamma or K/K’ high symmetry points. Here we theoretically demonstrate that moire devices formed from square bilayers can be used to simulate the ground state of the Hubbard model, but where the ratio of the nearestneighbor (t) and nexttonearest neighbor (t’) tunneling can be tuned between zero and infinity, in situ via an electric field. If experimentally realized, such a device would be the first of its kind, and would open a pathway toward the testing of a number of proposed exotic phases, such as a spinliquid and d+id superconductivity. Most importantly, the square Hubbard model is a quintessential model for highTc in cuprates, where numerics has demonstrated the absence of superconductivity when t’=0.
Contact Information:Prof. P. Volkov
More

4/5 Prof. Eric Heller, Harvard University (UConn Physics Colloquium)
Prof. Eric Heller, Harvard University (UConn Physics Colloquium)
Friday, April 5th, 2024
3:30 PM  4:30 PM
Gant West BuildingTITLE:
Quantum acoustics and the physics of the strange metals
ABSTRACT:
Quantum acoustics is the analog of quantum optics, with phonons playing the role of photons. The classical fields (electromagnetic, acoustic) are reached by virtue of coherent states in both cases. Quantum acoustics leads to two time dependent, interacting wave fields, one lattice, one quantum. The electron diffuses at a Planckian rate, independent of electronlattice coupling and temperature, and the calculated resistivity is linear in temperature. MottIoffeRegel and Drude peak mysteries are also resolved. A rather different carrier transport scenario emerges for the strange metals.
Contact Information:Prof. Carlos Trallero
More

4/8 Solar Eclipse Viewing Event
Solar Eclipse Viewing Event
Monday, April 8th, 2024
2:00 PM  4:30 PM
Horsebarn Hill (behind Dairy Bar)Community event for viewing the April 8 solar eclipse, hosted by UConn faculty and students.
90% of the Sun will be eclipsed from our location at maximum 3:25pm
Activities include:
 solar telescopes
 pinhole camera installation, and cameramaking demos
 eclipse demos
 eclipseviewing glasses for sale(fundraisers for undergrad + graduate physics organizations)
Contact Information:Prof. J. Trump
More

4/10 Condensed Matter Physics Seminar
Condensed Matter Physics Seminar
Wednesday, April 10th, 2024
2:00 PM  3:30 PM
Gant South BuildingProf. Claudio Chamon, Boston University
Circuit complexity and functionality: a thermodynamic perspective
We explore a link between complexity and physics for circuits of given functionality. Taking advantage of the connection between circuit counting problems and the derivation of ensembles in statistical mechanics, we tie the entropy of circuits of a given functionality and fixed number of gates to circuit complexity. We use thermodynamic relations to connect the quantity analogous to the equilibrium temperature to the exponent describing the exponential growth of the number of distinct functionalities as a function of complexity. This connection is intimately related to the finite compressibility of typical circuits. Finally, we use the thermodynamic approach to formulate a framework for the obfuscation of programs of arbitrary length – an important problem in cryptography – as thermalization through recursive mixing of neighboring sections of a circuit, which can viewed as the mixing of two containers with “gases of gates”. This recursive process equilibrates the average complexity and leads to the saturation of the circuit entropy, while preserving functionality of the overall circuit. The thermodynamic arguments hinge on ergodicity in the space of circuits which we conjecture is limited to disconnected ergodic sectors due to fragmentation. The notion of fragmentation has important implications for the problem of circuit obfuscation as it implies that there are circuits with same size and functionality that cannot be connected via local moves. Furthermore, we argue that fragmentation is unavoidable unless the complexity classes NP and coNP coincide.
Contact Information:Prof. P. Volkov
More

4/12 Graduate Student Seminar  Quantum Materials: Topological, Magnetic and Floquet System
Graduate Student Seminar  Quantum Materials: Topological, Magnetic and Floquet System
Friday, April 12th, 2024
12:15 PM  1:15 PM
Gant South Building
Contact Information:Prof. Ilya Sochnikov
More

4/15 Atomic, Molecular, and Optical Physics Seminar
Atomic, Molecular, and Optical Physics Seminar
Monday, April 15th, 2024
3:30 PM  4:30 PM
GS119Dr. Esteban Goetz, Department of Physics, University of Connecticut
Interferometric Harmonic Spectroscopy for Electron Dynamics Imaging and Attosecond Pulse Train Phase Characterization
The advent of ultrashort light pulses has opened the possibility of investigating atomic and molecular processes on their natural time scales. In particular, Attosecond Transient Absorption Spectroscopy (ATAS) [1], a technique that allows to timeresolve the quantum dynamics of electrons by monitoring the absorption of extreme ultraviolet (XUV) radiation by an atomic or molecular system when the latter is dressed by an infrared (IR) laser source.
Motivated by recent experimental advances in selfreferenced interferometric harmonic spectroscopy [2], we theoretically investigate an alternative approach to ATAS for electron dynamics imaging and attosecond pulse train (APT) phase characterization. In contrast to ATAS, which gives access to the imaginary part of the refractive index through an absorption measurement, an interferometric phase measurement gives information of its real part. In this talk, I will discuss the link between the XUV phase measurements of Ref. [2] and the different photoexcitation pathways occurring at the atomic level which are imprinted in the real part of the macroscopic refractive index. As an application, we show how such an interferometric approach can be used for phase retrieval of attosecond pulse trains based on twoarm harmonic spectroscopy and an optimization algorithm. Finally, I will highlight the impact of spinorbit couplings and macroscopic and field propagation effects on the phase measurements and APT phase retrieval. Our theoretical description is based on numerical solution of the scalar Maxwell equations beyond Beer’s Law for the macroscopic field propagation coupled to the timedependent Schroedinger equation for the quantum dynamics.
[1] M. Holler et al., Phys. Rev. Lett. 106, 123601 (2011)
[2] G. R. Harrison et al., arXiv:2305.17263 (2023)
Contact Information:Prof. A.T. Le
More

4/19 Professor Cassandra Paul (UConn Physics Colloquium)
Professor Cassandra Paul (UConn Physics Colloquium)
Friday, April 19th, 2024
3:30 PM  4:30 PM
RemoteProf. Cassandra Paul (San Jose State University)
Title and abstract (TBD)
Contact: Prof. Erin ScanlonRemote talk (details forthcoming)
Contact Information: More
See also UCONN physics event calendar and all upcoming UCONN physics events list.