Preliminary Exam: Electromagnetism, Thursday January 11, 2018. 9:00-12:00

Answer a total of any **THREE** out of the four questions. Put the solution to each problem in a separate blue book and put the number of the problem and your name on the front of each book. If you submit solutions to more than three problems, only the first three problems as listed on the exam will be graded.

1. A perfectly conducting sphere (of radius \(a\)) is placed in a uniform electric field of magnitude \(E_0\) pointing in the \(z\)-direction. Assume that the total charge on the sphere is zero and that the sphere is grounded.

 (a) What is the surface charge density on the sphere?

 (b) What is the induced dipole moment of the sphere?

2. A plane electromagnetic wave is normally incident on a glass plate of index of refraction \(n\) from a region of index \(n = 1\).

 (a) Show that the reflection coefficient (of the intensity) is given by \(R = (n - 1)^2/(n + 1)^2\) for a single interface. Assume that \(n = (\epsilon/\epsilon_0)^{1/2}\) where \(\epsilon\) is the permittivity of the glass and \(\epsilon_0\) is the permittivity of the vacuum, and assume that the permeability of glass is same as that of vacuum \((\mu = \mu_0)\).

 (b) If the intensity of the wave is \(I\), calculate the radiation pressure on the plate. Does the incoming beam push on the glass or pull it in the direction of the reflected beam?
3. A hollow sphere of radius R is centered around the origin of the coordinate system and carries the charge distribution $\rho_{el}(\vec{x}) = Q/(4\pi R^2)\delta(r - R)$ on its surface. The sphere rotates with a constant angular velocity $\vec{\omega} = \omega \hat{z}$, which implies a current density $\vec{j}(\vec{x}) = \rho_{el}(\vec{x}) \vec{x} \times \vec{\omega}$ on its surface.

(a) Determine the electrostatic field $\vec{E}(r)$ inside and outside the sphere.

(b) Show that the magnetic dipole moment of the sphere is $\vec{m} = \frac{1}{3} Q R^2 \vec{\omega}$. (Hint: one way to solve this problem is to recall that the dipole moment for a planar current loop is given by the product of the current times the area.)

(c) Determine the magnetic field $\vec{B}(\vec{r})$ inside and outside the sphere.

4. (a) Consider a homogeneous, isotropic conducting medium with material constants ε, μ, σ and no net charge. Starting from the Maxwell’s equations derive the wave equations for the fields $\vec{E}(\vec{x}, t)$ and $\vec{B}(\vec{x}, t)$.

(b) Consider a plane wave of the type $\vec{E}(\vec{x}, t) = \vec{E}_0 \exp(ikz - i\omega t)$ traveling along the z-axis in the situation described in (a).

(i) Derive the dispersion relation showing how ω and k are related.

(ii) Determine k assuming that $\text{Im} \, k \ll \text{Re} \, k$.

(iii) Under which conditions is the assumption of (ii) justified?

(iv) After which distance ξ does the amplitude of the electric (or magnetic) field of the wave fall off by the factor $1/e$?

(c) Repeat the calculation performed in (b), but in the “quasi stationary approximation” with the displacement current neglected, and derive the distance δ after which the amplitude of the electric (or magnetic) field of the plane wave is diminished by the factor $1/e$. Under which conditions is this “quasi stationary approximation” justified?
Vector Formulas

\[a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b) \]
\[a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \]
\[(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c) \]
\[\nabla \times \nabla \psi = 0 \]
\[\nabla \cdot (\nabla \times a) = 0 \]
\[\nabla \times (\nabla \times a) = \nabla(\nabla \cdot a) - \nabla^2 a \]
\[\nabla \cdot (\psi a) = a \cdot \nabla \psi + \psi \nabla \cdot a \]
\[\nabla \times (\psi a) = \nabla \psi \times a + \psi \nabla \times a \]
\[\nabla(a \cdot b) = (a \cdot \nabla)b + (b \cdot \nabla)a + a \times (\nabla \times b) + b \times (\nabla \times a) \]
\[\nabla \cdot (a \times b) = b \cdot (\nabla \times a) - a \cdot (\nabla \times b) \]
\[\nabla \times (a \times b) = a(\nabla \cdot b) - b(\nabla \cdot a) + (b \cdot \nabla)a - (a \cdot \nabla)b \]

If \(\mathbf{x} \) is the coordinate of a point with respect to some origin, with magnitude \(r = |\mathbf{x}| \), \(\mathbf{n} = \mathbf{x}/r \) is a unit radial vector, and \(f(r) \) is a well-behaved function of \(r \), then

\[\nabla \cdot \mathbf{x} = 3 \quad \nabla \times \mathbf{x} = 0 \]
\[\nabla \cdot [\mathbf{n} f(r)] = \frac{2}{r} f + \frac{\partial f}{\partial r} \quad \nabla \times [\mathbf{n} f(r)] = 0 \]
\[(\mathbf{a} \cdot \nabla) \mathbf{n} f(r) = \frac{f(r)}{r} [\mathbf{a} - \mathbf{n}(\mathbf{a} \cdot \mathbf{n})] + \mathbf{n}(\mathbf{a} \cdot \mathbf{n}) \frac{\partial f}{\partial r} \]
\[\nabla(\mathbf{x} \cdot \mathbf{a}) = \mathbf{a} + \mathbf{x}(\nabla \cdot \mathbf{a}) + i(\mathbf{L} \times \mathbf{a}) \]

where \(\mathbf{L} = \frac{1}{i} (\mathbf{x} \times \nabla) \) is the angular-momentum operator.
Theorems from Vector Calculus

In the following ϕ, ψ, and \mathbf{A} are well-behaved scalar or vector functions, V is a three-dimensional volume with volume element d^3x, S is a closed two-dimensional surface bounding V, with area element da and unit outward normal \mathbf{n} at da.

$$
\int_V \nabla \cdot \mathbf{A} \, d^3x = \int_S \mathbf{A} \cdot \mathbf{n} \, da \quad \text{(Divergence theorem)}
$$

$$
\int_V \nabla \psi \, d^3x = \int_S \psi \mathbf{n} \, da
$$

$$
\int_V \nabla \times \mathbf{A} \, d^3x = \int_S \mathbf{n} \times \mathbf{A} \, da
$$

$$
\int_V (\phi \nabla^2 \psi + \nabla \phi \cdot \nabla \psi) \, d^3x = \int_S \phi \mathbf{n} \cdot \nabla \psi \, da \quad \text{(Green's first identity)}
$$

$$
\int_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, d^3x = \int_S (\phi \nabla \psi - \psi \nabla \phi) \cdot \mathbf{n} \, da \quad \text{(Green's theorem)}
$$

In the following S is an open surface and C is the contour bounding it, with line element dl. The normal \mathbf{n} to S is defined by the right-hand-screw rule in relation to the sense of the line integral around C.

$$
\int_S (\nabla \times \mathbf{A}) \cdot \mathbf{n} \, da = \oint_C \mathbf{A} \cdot d\mathbf{l} \quad \text{(Stokes's theorem)}
$$

$$
\int_S \mathbf{n} \times \nabla \psi \, da = \oint_C \psi \, d\mathbf{l}
$$
Explicit Forms of Vector Operations

Let \(e_1, e_2, e_3 \) be orthogonal unit vectors associated with the coordinate directions specified in the headings on the left, and \(A_1, A_2, A_3 \) be the corresponding components of \(\mathbf{A} \). Then

\[
\nabla \psi = e_1 \frac{\partial \psi}{\partial x_1} + e_2 \frac{\partial \psi}{\partial x_2} + e_3 \frac{\partial \psi}{\partial x_3}
\]

\[
\nabla \cdot \mathbf{A} = \frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_2} + \frac{\partial A_3}{\partial x_3}
\]

\[
\nabla \times \mathbf{A} = e_1 \left(\frac{\partial A_3}{\partial x_2} - \frac{\partial A_2}{\partial x_3} \right) + e_2 \left(\frac{\partial A_1}{\partial x_3} - \frac{\partial A_3}{\partial x_1} \right) + e_3 \left(\frac{\partial A_2}{\partial x_1} - \frac{\partial A_1}{\partial x_2} \right)
\]

\[
\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x_1^2} + \frac{\partial^2 \psi}{\partial x_2^2} + \frac{\partial^2 \psi}{\partial x_3^2}
\]

Cylindrical coordinates \((r, \theta, z)\):

\[
\nabla \psi = e_1 \frac{\partial \psi}{\partial r} + e_2 \frac{1}{r} \frac{\partial \psi}{\partial \theta} + e_3 \frac{\partial \psi}{\partial z}
\]

\[
\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial A_1}{\partial r} \right) + \frac{1}{r} \frac{\partial A_2}{\partial \theta} + \frac{\partial A_3}{\partial z}
\]

\[
\nabla \times \mathbf{A} = e_1 \left(\frac{1}{r} \frac{\partial A_3}{\partial \theta} - \frac{\partial A_2}{\partial z} \right) + e_2 \left(\frac{1}{r} \frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial \theta} \right) + e_3 \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r \frac{\partial A_2}{\partial \theta} \right) - \frac{\partial A_4}{\partial \phi} \right)
\]

\[
\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\partial^2 \psi}{\partial z^2}
\]

Spherical coordinates \((r, \theta, \phi)\):

\[
\nabla \psi = e_1 \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r} + e_2 \frac{1}{r} \frac{\partial \psi}{\partial \theta} + e_3 \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi}
\]

\[
\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial A_1}{\partial r} \right) + \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial A_2}{\partial \theta} \right) - \frac{\partial A_2}{\partial \phi} \right)
\]

\[
\nabla \times \mathbf{A} = e_1 \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} \left(\sin \theta A_3 \right) - \frac{\partial A_2}{\partial \phi} \right]
\]

\[
+ e_2 \left[\frac{1}{r \sin \theta} \frac{\partial A_1}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} \left(r A_3 \right) \right] + e_3 \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r A_2 \right) - \frac{\partial A_1}{\partial \theta} \right]
\]

\[
\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}
\]

\[
\left[\text{Note that } \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) = \frac{1}{r} \frac{\partial^2 \psi}{\partial r^2} \left(r \psi \right) \right]
\]